【題目】在平面直角坐標(biāo)系xOy中,拋物線y=ax2+2ax﹣3a(a>0)與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)).
(1)求拋物線的對稱軸及線段AB的長;
(2)拋物線的頂點(diǎn)為P,若∠APB=120°,求頂點(diǎn)P的坐標(biāo)及a的值;
(3)若在拋物線上存在一點(diǎn)N,使得∠ANB=90°,結(jié)合圖象,求a的取值范圍.
【答案】(1) x=﹣1 , AB=4 ;(2) 點(diǎn)P的坐標(biāo)為(﹣1,﹣ ).a(chǎn)= ; (3) a≥ .
【解析】(1)、根據(jù)題意求出點(diǎn)A和點(diǎn)B的坐標(biāo),從而得出對稱軸;(2)、設(shè)拋物線的對稱軸與x軸交于點(diǎn)H,根據(jù)題意得出AH和PH的長度,從而得出點(diǎn)P的坐標(biāo),將其代入函數(shù)解析式得出a的值;(3)、以AB為直徑作⊙H, 當(dāng)∠ANB=90°, 點(diǎn)N在⊙H上,將x=-1代入y=-4a得出HP的長度,根據(jù)題意得出a的取值范圍.
(1)、解:令y=0得:ax2+2ax﹣3a=0,即a(x+3)(x﹣1)=0,解得:x=﹣3或x=1,
∴A(﹣3,0)、B(1,0), ∴拋物線的對稱軸為直線x=﹣1,AB=4;
(2)、解:如圖1所示:設(shè)拋物線的對稱軸與x軸交于點(diǎn)H,
∵∠APB=120°,AB=4,PH在對稱軸上, ∴AH=2,∠APB=60°, ∴PH= ,
∴點(diǎn)P的坐標(biāo)為(﹣1,﹣ ),將點(diǎn)P的坐標(biāo)代入得:﹣ =﹣4a,解得a= ;
(3)、解:如圖2所示:以AB為直徑作⊙H, ∵當(dāng)∠ANB=90°, ∴點(diǎn)N在⊙H上,
∵點(diǎn)N在拋物線上, ∴點(diǎn)N為拋物線與⊙H的交點(diǎn), ∴點(diǎn)P在圓上或點(diǎn)P在圓外,
∴HP≥2, ∵將x=﹣1代入得:y=﹣4a, ∴HP=4a, ∴4a≥2,解得a≥ ,
∴a的取值范圍是a≥ .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù) (為常數(shù)),當(dāng)自變量的值滿足時(shí),與其對應(yīng)的函數(shù)值的最大值為-1,則的值為( )
A. 3或6 B. 1或6 C. 1或3 D. 4或6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小紅用一張長方形紙片ABCD進(jìn)行折紙,已知該紙片寬AB為8cm,長BC為10cm.當(dāng)小紅折疊時(shí),頂點(diǎn)D落在BC邊上的點(diǎn)F處(折痕為AE).想一想,此時(shí)EC有多長?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知點(diǎn)C在線段AB上,線段AC=10厘米,BC=6厘米,點(diǎn)M,N分別是AC,BC的中點(diǎn).
(1)求線段MN的長度;
(2)根據(jù)第(1)題的計(jì)算過程和結(jié)果,設(shè)AC+BC=a,其他條件不變,求MN的長度;
(3)動(dòng)點(diǎn)P、Q分別從A、B同時(shí)出發(fā),點(diǎn)P以2cm/s的速度沿AB向右運(yùn)動(dòng),終點(diǎn)為B,點(diǎn)Q以1cm/s的速度沿AB向左運(yùn)動(dòng),終點(diǎn)為A,當(dāng)一個(gè)點(diǎn)到達(dá)終點(diǎn),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng),求運(yùn)動(dòng)多少秒時(shí),C、P、Q三點(diǎn)有一點(diǎn)恰好是以另兩點(diǎn)為端點(diǎn)的線段的中點(diǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下表中有兩種移動(dòng)電話計(jì)費(fèi)方式.設(shè)一個(gè)月內(nèi)用移動(dòng)電話主叫為(是正整數(shù)).
月使用費(fèi)/元 | 主叫限定時(shí)間/min | 主 叫 超 時(shí)費(fèi)/(元/min) | 被叫 | |
方式一 | 58 | 150 | 0.25 | 免費(fèi) |
方式二 | 88 | 350 | 0.19 | 免費(fèi) |
(1)根據(jù)上表,補(bǔ)全下列表.
主叫時(shí)間分 | 方式一計(jì)費(fèi)/元 | 方式二計(jì)費(fèi)/元 |
小于150 | 58 | 88 |
等于150 | 58 | 88 |
大于150且小于 350 | 88 | |
等于350 | 88 | |
大于350 |
(2)觀察(1)中表格,你能從中發(fā)現(xiàn)如何根據(jù)主叫時(shí)間選擇省錢的計(jì)費(fèi)方式嗎?通過計(jì)算驗(yàn)證你的看法.
(3)小明本月通話時(shí)間分鐘.如果采用方式二付費(fèi)比方式一付費(fèi)少20.6元;如果通話時(shí)間減少70分鐘,采用方式二付費(fèi)比方式一付費(fèi)少5元.你能確定小明本月通話時(shí)長嗎?請你通過計(jì)算說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在正方形ABCD中,P是對角線BD上的點(diǎn),點(diǎn)E在AB上,且PA=PE.
(1)求證:PC=PE;
(2)求∠CPE的度數(shù);
(3)如圖2,把正方形ABCD改為菱形ABCD,其他條件不變,試探究∠CPE與∠ABC之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC是等腰直角三角形,∠BAC= 90°,AB=AC,四邊形ADEF是正方形,點(diǎn)B、C分別在邊AD、AF上,此時(shí)BD=CF,BD⊥CF成立.
(1)當(dāng)△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)θ(0°<θ<90°)時(shí),如圖2,BD=CF成立嗎?若成立,請證明;若不成立,請說明理由.
(2)當(dāng)△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°時(shí),如圖3,延長DB交CF于點(diǎn)H.
①求證:BD⊥CF;
②當(dāng)AB=2,AD=3時(shí),求線段DH的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在半徑為2的扇形AOB中,∠AOB=90°,點(diǎn)C是弧 AB上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A、B重合)OD⊥BC,OE⊥AC,垂足分別為點(diǎn)D,E;在點(diǎn)C的運(yùn)動(dòng)過程中,下列說法正確的是( )
A. 扇形AOB的面積為 B. 弧BC的長為 C. ∠DOE=45° D. 線段DE的長是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新定義:[a,b,c]為二次函數(shù)y=ax2+bx+e(a≠0,a,b,c為實(shí)數(shù))的“圖象數(shù)”,如:y=-x2+2x+3的“圖象數(shù)”為[-1,2,3]
(1)二次函數(shù)y=x2-x-1的“圖象數(shù)”為 .
(2)若圖象數(shù)”是[m,m+1,m+1]的二次函數(shù)的圖象與x軸只有一個(gè)交點(diǎn),求m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com