【題目】如圖,隧道的截面由拋物線和長方形構成,長方形的長是8m,寬是2m,拋物線的最高點到路面的距離為6米.
(1)按如圖所示建立平面直角坐標系,求表示該拋物線的函數(shù)表達式;
(2)一輛貨運卡車高為4m,寬為2m,如果該隧道內(nèi)設雙向車道,那么這輛貨車能否安全通過?
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在中,與的平分線交于點,過點作交于點,交于點,那么下列結論:①;②;③和都是等腰三角形;④的周長等于與的和,其中正確的有( )
A.4個B.3個C.2個D.1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,四邊形ABCD是正方形,M是AB延長線上一點.直角三角尺的一條直角邊經(jīng)過點D,且直角頂點E在AB邊上滑動(點E不與點A、B重合),另一直角邊與∠CBM的平分線BF相交于點F.
(1)如圖1,當點E在AB邊得中點位置時:
①通過測量DE、EF的長度,猜想DE與EF滿足的數(shù)量關系是 .
②連接點E與AD邊的中點N,猜想NE與BF滿足的數(shù)量關系是 ,請證明你的猜想.
(2)如圖2,當點E在AB邊上的任意位置時,猜想此時DE與EF有怎樣的數(shù)量關系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=12,點E是AD上的一點,AE=6,BE的垂直平分線交BC的延長線于點F,連接EF交CD于點G.若G是CD的中點,則BC的長是__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明袋子中有1個紅球和3個白球,這些球除顏色外都相同.
(1)從袋中任意摸出2個球,用樹狀圖或列表求摸出的2個球顏色不同的概率;
(2)在袋子中再放入x個白球后,進行如下實驗:從袋中隨機摸出1個球,記錄下顏色后放回袋子中并攪勻.經(jīng)大量試驗,發(fā)現(xiàn)摸到白球的頻率穩(wěn)定在0.95左右,求x的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,E、F是四邊形ABCD的對角線AC上的兩點,AF=CE,DF=BE,DF∥BE.
求證:(1)△AFD≌△CEB.(2)四邊形ABCD是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,矩形ABCD中,P是AB邊上的一點(不與A,B重合),PE平分∠APC交射線AD于E,過E作EM⊥PE交直線CP于M,交直線CD于N.
(1)求證:CM=CN;
(2)若AB:BC=4:3,
①當= 時,E恰好是AD的中點;
②如圖2,當△PEM與△PBC相似時,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB與CD交于點O,OE平分∠AOC,點F為AB上一點(不與點A及O重合),過點F作FG∥OE,交CD于點G,若∠AOD=110°,則∠AFG度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知將一副三角板(直角三角板OAB和直角三角板OCD,∠AOB=90°,∠ABO=45°,∠CDO=90°,∠COD=60°)
(1)如圖1擺放,點O、A、C在一直線上,則∠BOD的度數(shù)是多少?
(2)如圖2,將直角三角板OCD繞點O逆時針方向轉(zhuǎn)動,若要OB恰好平分∠COD,則∠AOC的度數(shù)是多少?
(3)如圖3,當三角板OCD擺放在∠AOB內(nèi)部時,作射線OM平分∠AOC,射線ON平分∠BOD,如果三角板OCD在∠AOB內(nèi)繞點O任意轉(zhuǎn)動,∠MON的度數(shù)是否發(fā)生變化?如果不變,求其值;如果變化,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com