【題目】拋物線y=﹣x2+(m﹣1)x+my軸交點坐標(biāo)是(0,3).

(1)求出m的值;

(2)求拋物線與x軸的交點;

(3)當(dāng)x取什么值時,y<0?

【答案】(1)m的值為3;(2)(﹣1,0),(3,0);(3)當(dāng)x<﹣1x>3時,y<0.

【解析】

1)把(0,3)代入y=-x2+m-1x+m可求出m的值;

2)由(1)得拋物線解析式為y=-x2+2x+3,然后解方程-x2+2x+3=0得拋物線與x軸的交點坐標(biāo);

3)利用函數(shù)圖象,寫出拋物線在x軸下方所對應(yīng)的自變量的范圍即可.

解:(1)把(0,3)代入y=﹣x2+(m﹣1)x+mm=3,

m的值為3;

(2)拋物線解析式為y=﹣x2+2x+3,

當(dāng)y=0時,﹣x2+2x+3=0,解得x1=﹣1,x2=3,

所以拋物線與x軸的交點坐標(biāo)為(﹣1,0),(3,0);

(3))∵當(dāng)x=1時,y=4,

∴圖象的頂點坐標(biāo)為:(1,4),

如圖所示:

故當(dāng)x<﹣1x>3時,y<0.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小王和小張利用如圖所示的轉(zhuǎn)盤做游戲,轉(zhuǎn)盤的盤面被分為面積相等的4個扇形區(qū)域,且分別標(biāo)有數(shù)字1,2,3,4.游戲規(guī)則如下:兩人各轉(zhuǎn)動轉(zhuǎn)盤一次,分別記錄指針停止時所對應(yīng)的數(shù)字,如兩次的數(shù)字都是奇數(shù),則小王勝;如兩次的數(shù)字都是偶數(shù),則小張勝;如兩次的數(shù)字是奇偶,則為平局.解答下列問題:

(1)小王轉(zhuǎn)動轉(zhuǎn)盤,當(dāng)轉(zhuǎn)盤指針停止,對應(yīng)盤面數(shù)字為奇數(shù)的概率是多少?

(2)該游戲是否公平?請用列表或畫樹狀圖的方法說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】晨光中學(xué)課外活動小組準(zhǔn)備圍建一個矩形生物苗圃園,其中一邊靠墻,另外三邊用長為30米的籬笆圍成.已知墻長為18米(如圖所示),設(shè)這個苗圃園垂直于墻的一邊的長為x米.

(1)若平行于墻的一邊長為y米,直接寫出yx的函數(shù)關(guān)系式及其自變量x的取值范圍;

(2)設(shè)這個苗圃園的面積為S,求Sx之間的函數(shù)關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列圖形中,既是軸對稱圖形又是中心對稱圖形的是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx﹣3a經(jīng)過點A﹣10)、C0,3),與x軸交于另一點B,拋物線的頂點為D

1)求此二次函數(shù)解析式;

2)連接DC、BC、DB,求證:△BCD是直角三角形;

3)在對稱軸右側(cè)的拋物線上是否存在點P,使得△PDC為等腰三角形?若存在,求出符合條件的點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在△ABC中,AB=AC=5,BC=8,D,E分別為BC,AB邊上一點,∠ADE=∠C.

(1)求證:△BDE∽△CAD;

(2)若CD=2,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,ABC = 90°,BC = 1,AC =

1以點B為旋轉(zhuǎn)中心,將ABC沿逆時針方向旋轉(zhuǎn)90°得到ABC′,請畫出變換后的圖形;

2求點A和點A′之間的距離

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】汽車產(chǎn)業(yè)的發(fā)展,有效促進我國現(xiàn)代化建設(shè).某汽車銷售公司2015年盈利1500萬元,到2017年盈利2160萬元,且從2015年到2017年,每年盈利的年增長率相同.

(1)求平均年增長率?

(2)若該公司盈利的年增長率繼續(xù)保持不變,預(yù)計2018年盈利多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ABDCABAD,對角線AC,BD交于點OAC平分BAD,過點CCEABAB的延長線于點E,連接OE

(1)求證:四邊形ABCD是菱形;

(2)若AB,BD=2,求OE的長.

查看答案和解析>>

同步練習(xí)冊答案