【題目】如圖,在Δ中,∠=,在同一平面內(nèi),現(xiàn)將Δ圍繞點(diǎn)旋轉(zhuǎn),使得點(diǎn)落在點(diǎn),點(diǎn)落在點(diǎn),如果那么∠=______

【答案】40°

【解析】

先根據(jù)平行線的性質(zhì),由CC′AB得∠ACC=CAB=70°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得AC=AC′,∠BAB=CAC,于是根據(jù)等腰三角形的性質(zhì)有∠ACC=ACC=70°,然后利用三角形內(nèi)角和定理可計(jì)算出∠CAC=40°,從而得到∠BAB的度數(shù).

解:∵CC′∥AB,

∴∠ACC=CAB=70°,

∵△ABC繞點(diǎn)A旋轉(zhuǎn)到△ABC′的位置,

AC=AC′,∠BAB=CAC′,

在△ACC′中,∵AC=AC′,

∴∠AC'C=ACC'=70°,

∴∠CAC=180°-70°-70°=40°,

∴∠BAB=40°.

故答案為:40°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在菱形中,,是對(duì)角線上一點(diǎn),是線段延長(zhǎng)線上一點(diǎn),且,連接、

是線段的中點(diǎn),如圖,易證:(不需證明);

是線段延長(zhǎng)線上的任意一點(diǎn),其它條件不變,如圖、圖,線段、有怎樣的數(shù)量關(guān)系,直接寫出你的猜想;并選擇一種情況給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù),則下列關(guān)于該函數(shù)的描述中,錯(cuò)誤的是(

A. 該函數(shù)的最小值是

B. 該函數(shù)圖象與軸沒有交點(diǎn)

C. 該函數(shù)圖象與軸有兩個(gè)不同的交點(diǎn)

D. 當(dāng)時(shí),隨著的增大而增大

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】以正方形的一組鄰邊、向形外作等邊三角形、,則下列結(jié)論中錯(cuò)誤的是(

A. 平分 B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,AB=AC,∠BAC=αα60°),將線段BC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到線段BD

1)如圖1,直接寫出∠ABD的大。ㄓ煤α的式子表示);

2)如圖2,若∠BCE=150°,∠ABE=60°, DEC=45°,求α的值;

3)如圖3,若∠BCE=150°,∠ABE=60°,判斷ABE的形狀并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,垂直,AB=6Δ是等邊三角形,點(diǎn)在射線上運(yùn)動(dòng),以為邊向右上方作等邊Δ,射線與射線交于點(diǎn).

1)如圖1,當(dāng)點(diǎn)運(yùn)動(dòng)到與點(diǎn)成一條直線時(shí), (填長(zhǎng)度),∠ 度.

2)在圖2中,①求證:∠;

②隨著點(diǎn)的運(yùn)動(dòng),∠的度數(shù)是否發(fā)生改變?若不變,求出這個(gè)角的度數(shù);若改變,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在某場(chǎng)足球比賽中,球員甲從球門底部中心點(diǎn)的正前方處起腳射門,足球沿拋物線飛向球門中心線;當(dāng)足球飛離地面高度為時(shí)達(dá)到最高點(diǎn),此時(shí)足球飛行的水平距離為.已知球門的橫梁高

在如圖所示的平面直角坐標(biāo)系中,問(wèn)此飛行足球能否進(jìn)球門?(不計(jì)其它情況)

守門員乙站在距離球門處,他跳起時(shí)手的最大摸高為,他能阻止球員甲的此次射門嗎?如果不能,他至少后退多遠(yuǎn)才能阻止球員甲的射門?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】要建一個(gè)如圖所示的面積為300 的長(zhǎng)方形圍欄,圍欄總長(zhǎng)50m,一邊靠墻(墻長(zhǎng)25m),

(1)求圍欄的長(zhǎng)和寬;

(2)能否圍成面積為400 的長(zhǎng)方形圍欄?如果能,求出該長(zhǎng)方形的長(zhǎng)和寬,如果不能請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我縣某商場(chǎng)計(jì)劃購(gòu)進(jìn)甲、乙兩種商品共80件,這兩種商品的進(jìn)價(jià)、售價(jià)如表所示:

進(jìn)價(jià)(元/件)

售價(jià)(元/件)

甲種商品

15

20

乙種商品

25

35

設(shè)其中甲種商品購(gòu)進(jìn)x件,售完此兩種商品總利潤(rùn)為y元.

(1)寫出y與x的函數(shù)關(guān)系式.

(2)該商場(chǎng)計(jì)劃最多投入1500元用于購(gòu)進(jìn)這兩種商品共80件,則至少要購(gòu)進(jìn)多少件甲種商品?若售完這些商品,商場(chǎng)可獲得的最大利潤(rùn)是多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案