【題目】如圖,在矩形ABCD中,AB=3,BC=5,以B為圓心BC為半徑畫弧交AD于點(diǎn)E,連接CE,作BFCE,垂足為F,則tanFBC的值為( 。

A. B. C. D.

【答案】D

【解析】試題分析:首先根據(jù)以B為圓心BC為半徑畫弧交AD于點(diǎn)E,判斷出AE=BC=5;然后根據(jù)勾股定理,求出AE的值是多少,進(jìn)而求出DE的值是多少;再根據(jù)勾股定理,求出CE的值是多少,再根據(jù)BC=BE,BF⊥CE,判斷出點(diǎn)FCE的中點(diǎn),據(jù)此求出CF、BF的值各是多少;最后根據(jù)角的正切的求法,求出tan∠FBC的值是多少即可.

試題解析:B為圓心BC為半徑畫弧交AD于點(diǎn)E,

BE=BC=5

∴AE=,

∴DE=AD-AE=5-4=1

∴CE=

∵BC=BE,BF⊥CE

點(diǎn)FCE的中點(diǎn),

∴CF=CE=,

∴BF=

∴tan∠FBC=

tan∠FBC的值為

故選D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中的每個(gè)小正方形邊長為1,△ABC的頂點(diǎn)在網(wǎng)格的格點(diǎn)上.

1)畫線段ADBC,且使ADBC,連接BD;此時(shí)D點(diǎn)的坐標(biāo)是   

2)直接寫出線段AC的長為   ,AD的長為   ,BD的長為   

3)直接寫出△ABD   三角形,四邊形ADBC面積是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是某月的月歷,用一個(gè)矩形框,每次框住9個(gè)數(shù).若這9個(gè)數(shù)之和是81,則這9個(gè)數(shù)中最大的數(shù)為_____,這9個(gè)數(shù)之和可能會(huì)是100嗎?_____(填“能”或“不能”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀:所謂勾股數(shù)就是滿足方程x2+y2=z2的正整數(shù)解,即滿足勾股定理的三個(gè)正整數(shù)構(gòu)成的一組數(shù).我國古代數(shù)學(xué)專著《九章算術(shù)》一書,在世界上第一次給出該方程的解為:y=mn,,其中m>n>0,mn是互質(zhì)的奇數(shù).應(yīng)用:當(dāng)n=5時(shí),求一邊長為12的直角三角形另兩邊的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程

164x+2)=3x3

21

31

4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】目前,步行已成為人們最喜愛的健身方法之一,通過手機(jī)可以計(jì)算行走的步數(shù)與相應(yīng)的能量消耗.對(duì)比手機(jī)數(shù)據(jù)發(fā)現(xiàn)小明步行12 000步與小紅步行9 000步消耗的能量相同.若每消耗1千卡能量小明行走的步數(shù)比小紅多10步,求小紅每消耗1千卡能量需要行走多少步?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)場(chǎng)要建一個(gè)長方形ABCD的養(yǎng)雞場(chǎng),雞場(chǎng)的一邊靠墻,(墻長25m)另外三邊用木欄圍成,木欄長40m.

(1)若養(yǎng)雞場(chǎng)面積為168m2,求雞場(chǎng)垂直于墻的一邊AB的長.

(2)請(qǐng)問應(yīng)怎樣圍才能使養(yǎng)雞場(chǎng)面積最大?最大的面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某鎮(zhèn)組織20輛汽車裝運(yùn)完AB、C三種臍橙共100噸到外地銷售.按計(jì)劃,20輛汽車都要裝運(yùn),每輛汽車只能裝運(yùn)同一種臍橙,且必須裝滿.根據(jù)下表提供的信息,解答以下問題:

A

B

C

每輛汽車運(yùn)載量()

6

5

4

每噸臍橙獲利(百元)

12

16

10

(1)設(shè)裝運(yùn)A種臍橙的車輛數(shù)為x,裝運(yùn)B種臍橙的車輛數(shù)為y,求yx之間的函數(shù)關(guān)系式;

(2)如果裝運(yùn)每種臍橙的車輛數(shù)都不少于4輛,那么車輛的安排方案有幾種?并寫出每種安排方案;

(3)若要使此次銷售獲利最大,應(yīng)采用哪種安排方案?并求出最大利潤的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:在平行四邊形ABCD中,用直尺和圓規(guī)作∠BAD的平分線交BC于點(diǎn)E(尺規(guī)作圖的痕跡保留在圖中了),連接EF.

(1)求證:四邊形ABEF為菱形;

(2)AE,BF相交于點(diǎn)O,若BF=6,AB=5,求AE的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案