【題目】如圖,矩形ABCD的頂點(diǎn)A、B在x軸的正半軸上,反比例函數(shù)y=(k≠0)在第一象限內(nèi)的圖象經(jīng)過點(diǎn)D,交BC于點(diǎn)E.若AB=4,CE=2BE,tan∠AOD=,則k的值_____.
【答案】3
【解析】
由tan∠AOD=,可設(shè)AD=3a、OA=4a,在表示出點(diǎn)D、E的坐標(biāo),由反比例函數(shù)經(jīng)過點(diǎn)D、E列出關(guān)于a的方程,解之求得a的值即可得出答案.
解:∵tan∠AOD==,
∴設(shè)AD=3a、OA=4a,
則BC=AD=3a,點(diǎn)D坐標(biāo)為(4a,3a),
∵CE=2BE,
∴BE=BC=a,
∵AB=4,
∴點(diǎn)E(4+4a,a),
∵反比例函數(shù) 經(jīng)過點(diǎn)D、E,
∴k=12a2=(4+4a)a,
解得:a= 或a=0(舍),
∴D(2, )
則k=2×=3.
故答案為3.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等腰△ABC中,AB=AC.以C為圓心,CB的長為半徑作弧,交AB于點(diǎn)D.分別以B、D為圓心,大于BD的長為半徑作弧,兩弧交于點(diǎn)E.作射線CE交AB于點(diǎn)M.分別以A、C為圓心,CM、AM的長為半徑作弧,兩弧交于點(diǎn)N.連接AN、CN
(1)求證:AN⊥CN
(2)若AB=5,tanB=3,求四邊形AMCN的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛慢車和一輛快車沿相同路線從A地到B地,所行駛的路程與時(shí)間的函數(shù)圖象如圖所示,下列說法正確的有()個(gè)
①快車追上慢車需6小時(shí)
②慢車比快車早出發(fā)2小時(shí)
③快車速度為46km/h
④慢車速度為46km/h
⑤AB兩地相距828km
⑥快車14小時(shí)到達(dá)B地
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:關(guān)于x的二次函數(shù)的圖象與x軸交于點(diǎn)A(1,0)和點(diǎn)B,與y軸交于點(diǎn)C(0,3),拋物線的對稱軸與x軸交于點(diǎn)D.
(1)求二次函數(shù)的表達(dá)式;
(2)在y軸上是否存在一點(diǎn)P,使△PBC為等腰三角形.若存在,請求出點(diǎn)P的坐標(biāo);
(3)有一個(gè)點(diǎn)M從點(diǎn)A出發(fā),以每秒1個(gè)單位的速度在AB上向點(diǎn)B運(yùn)動,另一個(gè)點(diǎn)N從點(diǎn)D與點(diǎn)M同時(shí)出發(fā),以每秒2個(gè)單位的速度在拋物線的對稱軸上運(yùn)動,當(dāng)點(diǎn)M到 達(dá)點(diǎn)B時(shí),點(diǎn)M、N同時(shí)停止運(yùn)動,問點(diǎn)M、N運(yùn)動到何處時(shí),△MNB面積最大,試求出最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為迎接中國森博會,某商家計(jì)劃從廠家采購A,B兩種產(chǎn)品共20件,產(chǎn)品的采購單價(jià)(元/件)是采購數(shù)量(件)的一次函數(shù),下表提供了部分采購數(shù)據(jù).
采購數(shù)量(件) | 1 | 2 | … |
A產(chǎn)品單價(jià)(元/件) | 1480 | 1460 | … |
B產(chǎn)品單價(jià)(元/件) | 1290 | 1280 | … |
(1)設(shè)A產(chǎn)品的采購數(shù)量為x(件),采購單價(jià)為y1(元/件),求y1與x的關(guān)系式;
(2)經(jīng)商家與廠家協(xié)商,采購A產(chǎn)品的數(shù)量不少于B產(chǎn)品數(shù)量的,且A產(chǎn)品采購單價(jià)不低于1200元,求該商家共有幾種進(jìn)貨方案;
(3)該商家分別以1760元/件和1700元/件的銷售單價(jià)售出A,B兩種產(chǎn)品,且全部售完,在(2)的條件下,求采購A種產(chǎn)品多少件時(shí)總利潤最大,并求最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,直線y=x+1與x軸、y軸的交點(diǎn)分別為A、B,以x=﹣1為對稱軸的拋物線y=﹣x2+bx+c與x軸分別交于點(diǎn)A、C.
(1)求拋物線的解析式;
(2)若點(diǎn)P是第二象限內(nèi)拋物線上的動點(diǎn),設(shè)拋物線的對稱軸l與x軸交于一點(diǎn)D,連接PD,交AB于E,求出當(dāng)以A、D、E為頂點(diǎn)的三角形與△AOB相似時(shí)點(diǎn)P的坐標(biāo);
(3)若點(diǎn)Q在第二象限內(nèi),且tan∠AQD=2,線段CQ是否存在最小值?如果存在直接寫出最小值,如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=y1+y2,其中y1與x成反比例,y2與x﹣2成正比例,函數(shù)的自變量x的取值范圍是x≥,且當(dāng)x=1或x=4時(shí),y的值均為.
請對該函數(shù)及其圖象進(jìn)行如下探究:
(1)解析式探究:根據(jù)給定的條件,可以確定出該函數(shù)的解析式為: .
(2)函數(shù)圖象探究:
①根據(jù)解析式,補(bǔ)全下表:
x | 1 | 2 | 3 | 4 | 6 | 8 | … | |||
y | … |
②根據(jù)表中數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點(diǎn),并畫出函數(shù)圖象.
(3)結(jié)合畫出的函數(shù)圖象,解決問題:
①當(dāng)x=,,8時(shí),函數(shù)值分別為y1,y2,y3,則y1,y2,y3的大小關(guān)系為: ;(用“<”或“=”表示)
②若直線y=k與該函數(shù)圖象有兩個(gè)交點(diǎn),則k的取值范圍是 ,此時(shí),x的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,B、E是以AD為直接的半圓O的三等分點(diǎn),弧BE的長為,作BC⊥AE,交AE的延長線于點(diǎn)C,則圖中陰影部分的面積為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O是△ABC的邊AB上一點(diǎn),⊙O與邊AC相切于點(diǎn)E,與邊BC,AB分別相交于點(diǎn)D,F(xiàn),且DE=EF.
(1)求證:∠C=90°;
(2)當(dāng)BC=3,sinA=時(shí),求AF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com