【題目】如圖所示,OE是∠AOD的平分線,OC是∠BOD的平分線.
(1)若∠AOB=130°,則∠COE是多少度?
(2)在(1)的條件下,若∠COD=20°,則∠BOE是多少度?
【答案】(1) 65°(2) 85°
【解析】試題分析:(1)直接根據(jù)角平分線的定義進行解答即可;
(2)先根據(jù)∠COD=20°求出∠BOD的度數(shù),再根據(jù)∠AOB=130°求出∠AOD的度數(shù),根據(jù)角平分線的定義即可得出結論.
試題解析:(1)∵OC是∠AOD的平分線,OE是∠BOD的平分線,∠AOB=130°
∴∠COE=∠BOD+∠AOD=(∠BOD+∠AOD)=∠AOB=65°;
(2)∵∠COD=20°,
∴∠BOD=2×20°=40°,
∵∠AOB=130°,
∴∠AOD=∠AOB-∠BOD=130°-40°=90°,
∵OE是∠BOD的平分線,
∴∠BOE=∠AOD+∠BOD=×90°+40°=85°.
科目:初中數(shù)學 來源: 題型:
【題目】△ABC中,∠C=90°,∠A=60°,AC=2cm.長為1cm的線段MN在△ABC的邊AB上沿AB方向
以1cm/s的速度向點B運動(運動前點M與點A重合).過M,N分別作AB的垂線交直角邊于P,Q兩點,線段MN運動的時間為ts.
(1)若△AMP的面積為y,寫出y與t的函數(shù)關系式(寫出自變量t的取值范圍);
(2)線段MN運動過程中,四邊形MNQP有可能成為矩形嗎?若有可能,求出此時t的值;若不可能,說明理由;
(3)t為何值時,以C,P,Q為頂點的三角形與△ABC相似?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小紅同學要測量A、C兩地的距離,但A、C之間有一水池,不能直接測量,于是她在A、C同一水平面上選取了一點B,點B可直接到達A、C兩地.她測量得到AB=80米,BC=20米,∠ABC=120°.請你幫助小紅同學求出A、C兩點之間的距離.(參考數(shù)據(jù) ≈4.6)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,點O是正方形ABCD兩對角線的交點,分別延長OD到點G,OC到點E,使OG=2OD,OE=2OC,然后以OG、OE為鄰邊作正方形OEFG,連接AG,DE.
(1)、求證:DE⊥AG;
(2)、如圖2,正方形ABCD固定,將正方形OEFG繞點O逆時針旋轉α角(0°<α<360°),得到正方形OE′F′G′;
①在旋轉過程中,當∠OAG′是直角時,求α的度數(shù);
②若正方形ABCD的邊長為2,在旋轉過程中,求AF′長的最大值和此時α的度數(shù),直接寫出結果不必說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學習了有理數(shù)的乘法后,老師給同學們布置這樣一道題目:計算49 ×(–5),看誰算的又快又對,有三位同學的解法如下:
小軍:原式 =(49 + )×(–5)= 49×(–5)+ ×(–5)
=–245–4=–249;
小明:原式 = – × 5 = – = – 249 ;
小麗:原式 =(49 + )×(-5)=(50 -1 + )×(-5)
=(50 - )×(-5)= 50 ×(-5)+( - ) ×(-5)
= –250 += –249;
(1)對于以上三種解法,你認為誰的解法較好?
(2)上面的解法對你有何啟發(fā),用你認為最合適的方法計算:
19 ×(– 8)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小紅同學要測量A、C兩地的距離,但A、C之間有一水池,不能直接測量,于是她在A、C同一水平面上選取了一點B,點B可直接到達A、C兩地.她測量得到AB=80米,BC=20米,∠ABC=120°.請你幫助小紅同學求出A、C兩點之間的距離.(參考數(shù)據(jù) ≈4.6)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,A,B分別在射線OA,ON上,且∠MON為鈍角,現(xiàn)以線段OA,OB為斜邊向∠MON的外側作等腰直角三角形,分別是△OAP,△OBQ,點C,D,E分別是OA,OB,AB的中點.
(1)求證:△PCE≌△EDQ;
(2)延長PC,QD交于點R.如圖2,若∠MON=150°,求證:△ABR為等邊三角形;
(3)如圖3,若△ARB∽△PEQ,求∠MON大小.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察下列算式:12-02=1+0=1,,22-12=2+1=3,32-22=3+2=5,42-32=4+3=7 ,52-42=5+4=9,…….
若字母 表示自然數(shù),請把你觀察到的規(guī)律用含有 的式子表示出來________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com