精英家教網 > 初中數學 > 題目詳情

【題目】閱讀資料:我們把頂點在圓上,并且一邊和圓相交、另一邊和圓相切的角叫做弦切角,如圖1∠ABC所示.同學們研究發(fā)現:P為圓上任意一點,當弦AC經過圓心O時,且AB切⊙O于點A,此時弦切角∠CAB=∠P(圖2)
證明:∵AB切⊙O于點A,∴∠CAB=90°,又∵AC是直徑,∴∠P=90°∴∠CAB=∠P

問題拓展:若AC不經過圓心O(如圖3),該結論:弦切角∠CAB=∠P還成立嗎?請說明理由.
知識運用:如圖4,AD是△ABC中∠BAC的平分線,經過點A的⊙O與BC切于點D,與AB、AC分別相交于E、F.求證:EF∥BC.

【答案】解:問題拓展:成立.
如圖3,連接AO并延長交⊙O于點D,連接CD,
則∠D=∠P,
∵AD是直徑,
∴∠D+∠CAD=90°,
又∵AB切圓于點A,
∴∠CAB+∠CAD=90°,
∴∠CAB=∠CAD,
而∠CAD=∠P,
∴∠CAB=∠P;
知識運用:如圖4,連接DF,
∵AD是△ABC中∠BAC的平分線,
∴∠EAD=∠DAC,
∵⊙O與BC切于點D,
∴∠FDC=∠DAC,
∴∠FDC=∠EAD,
∵在⊙O中∠EAD=∠EFD,
∴∠FDC=∠EFD,
∴EF∥BC.


【解析】問題拓展:首先連接AO并延長交⊙O于點D,連接CD,由圓周角定理可得∠D=∠P,又由AD是直徑,AB切圓于點A,易證得∠CAB=∠CAD,繼而證得結論;
知識運用:連接DF,AD是△ABC中∠BAC的平分線,⊙O與BC切于點D,可得∠FDC=∠EAD,又由圓周角定理可得∠EAD=∠EFD,繼而證得結論.
【考點精析】解答此題的關鍵在于理解切線的性質定理的相關知識,掌握切線的性質:1、經過切點垂直于這條半徑的直線是圓的切線2、經過切點垂直于切線的直線必經過圓心3、圓的切線垂直于經過切點的半徑.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知二次函數y=ax2+bx+c的圖象經過點(﹣1,0)、(5,0)、(0、﹣5).
(1)求此二次函數的解析式;
(2)當0≤x≤5時,求此函數的最小值與最大值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在△ABC中,∠C=90°,AC=BC=4cm,D是AB的中點,以C為圓心,4cm長為半徑作圓,則A,B,C,D四點中,在圓內的有(
A.4個
B.3個
C.2個
D.1個

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖△ABC是正三角形,曲線CDEF叫做“正三角形的漸開線”,其中 、 圓心依次按A、B、C…循環(huán),它們依次相連接.若AB=1,則曲線CDEF長是(結果保留π).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某閉合電路中,其兩端電壓恒定,電流I(A)與電阻R(Ω)圖象如圖所示,回答問題:

(1)寫出電流I與電阻R之間的函數解析式.
(2)如果一個用電器的電阻為5Ω,其允許通過的最大電流是1A,那么這個用電器接在這個閉合電路中,會不會燒毀?說明理由.
(3)若允許的電流不超過4A時,那么電阻R的取值應該控制在什么范圍?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖①ABAC,BD、CD分別平分∠ABC和∠ACB.問:(答題時,注意書寫整潔)

(1)圖①中有幾個等腰三角形?(寫出來,不需要證明)

(2)D點作EFBC,交ABE,交ACF,如圖②,圖中增加了幾個等腰三角形,選一個進行證明.

(3)如圖③,若將題中的ABC改為不等邊三角形,其他條件不變,圖中有幾個等腰三角形?線段EFBE、CF有什么關系?(寫出來,不需要證明)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算:()2+(﹣4)0cos45°.

【答案】1

【解析】試題分析:把原式的第一項根據負整數指數冪的意義化簡,第二項根據算術平方根的定義求出9的算術平方根,第三項根據零指數公式化簡,最后一項利用特殊角的三角函數值化簡,合并后即可求出值.

試題解析:原式=4﹣3+1﹣

=2﹣1

=1.

型】解答
束】
16

【題目】《九章算術》勾股章有一題:今有二人同所立,甲行率七,乙行率三.乙東行,甲南行十步而斜東北與乙會.問甲乙行各幾何.大意是說,已知甲、乙二人同時從同一地

點出發(fā),甲的速度為7,乙的速度為3.乙一直向東走,甲先向南走10步,后又斜向北偏東方向走了一段后與乙相遇.那么相遇時,甲、乙各走了多遠?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知直角三角形兩邊x、y的長滿足|x2﹣4|+ =0,則第三邊長為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,四邊形ABCD,AD∥BCAB=4,BC=6CD=5,AD=3.

求:四邊形ABCD的面積.

查看答案和解析>>

同步練習冊答案