【題目】如圖,菱形ABCD的對角線AC,BD相交于點(diǎn)O,∠ABC=60°,過點(diǎn)B作AC的平行線交DC的延長線于點(diǎn)E.

(1) 求證:四邊形ABEC為菱形;

(2) 若AB=6,連接OE,求OE的值.

【答案】1見解析2

【解析】試題分析:(1)先證明四邊形ABEC為平行四邊形,再利用△ABC為等邊三角形證明四邊形ABEC為菱形

2)根據(jù)直角三角形的特征進(jìn)行解答即可.

試題解析:(1∵菱形ABCD,AB=BC,ABDEBEAC,∴四邊形ABEC為平行四邊形.∵AB=BC,ABC=60°,∴△ABC為等邊三角形,AB=AC,∴平行四邊形ABEC為菱形

2AB=6,ABC=60°∵△ABC為等邊三角形∴∠OBC=30°,OB=3∴∠OBE=30°+60°=90°,OE=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:一把直尺壓住射線OB,另一把直尺壓住射線OA并且與第一把直尺交于點(diǎn)P,小明說:射線OP就是∠BOA的角平分線.他這樣做的依據(jù)是( )

A.角平分線上的點(diǎn)到這個(gè)角兩邊的距離相等

B.角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在角的平分線上

C.三角形三條角平分線的交點(diǎn)到三條邊的距離相等

D.以上均不正確

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某單位為了響應(yīng)政府發(fā)出的全民健身的號(hào)召,打算在長和寬分別為20m16m的矩形大廳內(nèi)修建一個(gè)40m2的矩形健身房ABCD,該健身房的四面墻壁中有兩面沿用大廳的舊墻壁(如圖為平面示意圖),且每面舊墻壁上所沿用的舊墻壁長度不得超過其長度的一半,已知裝修舊墻壁的費(fèi)用為20/m2,新建(含裝修)墻壁的費(fèi)用為80/m2,設(shè)健身房高3m,健身房AB的長為xm,BC的長為ym,修建健身房墻壁的總投資為w元.

(1)求yx的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.

(2)求wx的函數(shù)關(guān)系式,并求出當(dāng)所建健身房AB長為8m時(shí)總投資為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtACB中,∠ACB90°,ACBC,E點(diǎn)為射線CB上一動(dòng)點(diǎn),連結(jié)AE,作AFAEAFAE

1)如圖1,過F點(diǎn)作FDACACD點(diǎn),求證:FDBC;

2)如圖2,連結(jié)BFACG點(diǎn),若AG3,CG1,求證:E點(diǎn)為BC中點(diǎn);

3)當(dāng)E點(diǎn)在射線CB上,連結(jié)BF與直線AC交于G點(diǎn),若BC4,BE3,則   (直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一直角坐標(biāo)系xOy中,二次函數(shù)與反比例函數(shù)的圖象如圖所示,如果兩個(gè)函數(shù)圖象上有三個(gè)不同的點(diǎn)A,m),B,m),C,m),其中m為常數(shù),令,那么的值為___________(用含m的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC在方格紙中

(1)請?jiān)诜礁窦埳辖⑵矫嬷苯亲鴺?biāo)系,使A(2,3),C(6,2),并求出B點(diǎn)坐標(biāo);

(2)以原點(diǎn)O為位似中心,相似比為2,在第一象限內(nèi)將ABC放大,畫出放大后的圖形ABC;

(3)計(jì)算ABC的面積S.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(),在正方形中,上一點(diǎn),延長線上一點(diǎn),且

(1)求證:

(2)在如圖()中,若上,且,則成立嗎?

證明你的結(jié)論.(3)運(yùn)用(1)(2)解答中積累的經(jīng)驗(yàn)和知識(shí),完成下題:

如圖()四邊形中,(),,,點(diǎn)上一點(diǎn),且,,求的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,長方形的邊分別在軸和軸上,點(diǎn)的坐標(biāo)是(5,3),直線軸交于點(diǎn),與線段交于點(diǎn)

1)用含的代數(shù)式表示點(diǎn)的坐標(biāo);

2)若,當(dāng)為何值時(shí), 是等腰三角形;

3)若,當(dāng)平分時(shí),求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,的垂直平分線與所在的直線相交所得到的銳角為,則等于______________度.

查看答案和解析>>

同步練習(xí)冊答案