【題目】探究證明:
(1)如圖1,在△ABC中,AB=AC,點E是BC上的一個動點,EG⊥AB,EF⊥AC,CD⊥AB,點G,F,D分別是垂足.求證:CD=EG+EF;
猜想探究:
(2)如圖2,在△ABC中,AB=AC,點E是BC的延長線上的一個動點,EG⊥AB于G,EF⊥AC交AC延長線于F,CD⊥AB于D,直接猜想CD、EG、EF之間的關系為 CD=EG﹣EF ;
問題解決:
(3)如圖3,邊長為10的正方形ABCD的對角線相交于點O、H在BD上,且BH=BC,連接CH,點E是CH上一點,EF⊥BD于點F,EG⊥BC于點G,則EF+EG= .
【答案】(1)證明見解析
(2)CD=EG﹣EF,
(3)5.
【解析】
試題分析:(1)根據S△ABC=S△ABE+S△ACE,得到ABCD=ABEG+ACEF,根據等式的性質即可得到結論;
(2)由于S△ABC=S△ABE﹣S△ACE,于是得到ABCD=ABEG﹣ACEF,根據等式的性質即可得到結論;
(3)根據正方形的性質得到AB=BC=10,∠ABC=90°,AC⊥BD,根據勾股定理得到AC=10,由于S△BCH=S△BCE+S△BHE,得到BHOC=BCEG+BHEF,根據等式的性質即可得到結論.
試題解析:(1)如圖1,連接AE,
∵EG⊥AB,EF⊥AC,CD⊥AB,
∵S△ABC=S△ABE+S△ACE,
∴ABCD=ABEG+ACEF,
∵AB=AC,
∴CD=EG+EF;
(2)CD=EG﹣EF,
理由:連接AE,
∵EG⊥AB,EF⊥AC,CD⊥AB,
∵S△ABC=S△ABE﹣S△ACE,
∴ABCD=ABEG﹣ACEF,
∵AB=AC,
∴CD=EG﹣EF;
故答案為:CD=EG﹣EF;
(3)∵四邊形ABCD是正方形,
∴AB=BC=10,∠ABC=90°,AC⊥BD,
∴AC=10,
∴OC=AC=5,
連接BE.
∵EF⊥BD于點F,EG⊥BC于點G,
∵S△BCH=S△BCE+S△BHE,
∴BHOC=BCEG+BHEF,
∴OC=EG+EF=5,
故答案為:5.
科目:初中數學 來源: 題型:
【題目】如圖,網格中的每個小正方形的邊長都是1,每個小正方形的頂點叫做格點.
△ACB和△DCE的頂點都在格點上,ED的延長線交AB于點F.
(1)求證:△ACB∽△DCE;(2)求證:EF⊥AB.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】對于任何實數,我們規(guī)定符號 =ad﹣bc,例如: =1×4﹣2×3=﹣2
(1)按照這個規(guī)律請你計算 的值;
(2)按照這個規(guī)定請你計算,當a2﹣3a+1=0時,求 的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商店如果將進貨價為8元的商品按每件10元售出,每天可銷售200件,現在采用提高售價,減少進貨量的方法增加利潤,已知這種商品每漲價0.5元,其銷量就減少10件.
(1)要使每天獲得利潤700元,請你幫忙確定售價;
(2)問售價定在多少時能使每天獲得的利潤最多?并求出最大利潤.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】設“※”表示一種新的運算符號,并且2※3=2+3+4;3※3=3+4+5;7※2=7+8;6※4=6+7+8+9;…….已知n※8=68,求n的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com