【題目】如圖,在△ABC中,AB=AC,D是BC上任意一點,過D分別向AB,AC引垂線,垂足分別為E,F(xiàn),CG是AB邊上的高.
(1)當D點在BC的什么位置時,DE=DF?請說明理由.
(2)DE,DF,CG的長之間存在著怎樣的等量關(guān)系?并說明理由.
(3)若D在底邊BC的延長線上,(2)中的結(jié)論還成立嗎?若不成立,又存在怎樣的關(guān)系?并說明理由.
【答案】(1)當點D在BC的中點時,DE=DF,理由見解析;(2)DE+DF=CG.理由見解析;(3)當點D在BC延長線上時,(2)中的結(jié)論不成立,但有DE﹣DF=CG.理由見解析.
【解析】分析:(1)當點D在BC的中點時,DE=DF,根據(jù)AAS證△BED≌△CFD,根據(jù)全等三角形的性質(zhì)推出即可;
(2)連接AD,根據(jù)三角形ABC的面積=三角形ABD的面積+三角形ACD的面積,進行分析證明;
(3)類似(2)的思路,仍然用計算面積的方法來確定線段之間的關(guān)系.即三角形ABC的面積=三角形ABD的面積-三角形ACD的面積.
詳解:(1)當點D在BC的中點時,DE=DF,理由如下:
∵D為BC中點,∴BD=CD,
∵AB=AC,∴∠B=∠C,
∵DE⊥AB,DF⊥AC,∴∠DEB=∠DFC=90°,
在△BED和△CFD中
∠B=∠C,∠DEB=∠DFC,BD=CD,
∴△BED≌△CFD(AAS),∴DE=DF.
(2)DE+DF=CG.
理由:連接AD,
則S△ABC=S△ABD+S△ACD,即ABCG=ABDE+ACDF,
∵AB=AC,∴CG=DE+DF.
(3)當點D在BC延長線上時,(2)中的結(jié)論不成立,但有DE﹣DF=CG.
理由:連接AD,則S△ABD=S△ABC+S△ACD,即ABDE=ABCG+ACDF
∵AB=AC,∴DE=CG+DF,即DE﹣DF=CG.
同理當D點在CB的延長線上時,(2)中結(jié)論不成立,則有DE﹣DF=CG,說明方法同上.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場銷售一種西裝和領(lǐng)帶,西裝每套定價200元,領(lǐng)帶每條定價40元.國慶節(jié)期間商場決定開展促銷活動,活動期間向客戶提供兩種優(yōu)惠方案:
方案一:買一套西裝送一條領(lǐng)帶;
方案二:西裝和領(lǐng)帶都按定價的90%付款.
現(xiàn)某客戶要到該商場購買西裝20套,領(lǐng)帶x.
(1)若該客戶按方案一購買,需付款多少元(用含x的式子表示)?若該客戶按方案二購買,需付款多少元(用含x的式子表示)?
(2)若,通過計算說明此時按哪種方案購買較為合算;
(3)當時,你能給出一種更為省錢的購買方法嗎?試寫出你的購買方法和所需費用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2﹣(2k﹣3)x+k2+1=0有兩個不相等的實數(shù)根x1、x2 .
(1)求k的取值范圍;
(2)試說明x1<0,x2<0;
(3)若拋物線y=x2﹣(2k﹣3)x+k2+1與x軸交于A、B兩點,點A、點B到原點的距離分別為OA、OB,且OA+OB=2OAOB﹣3,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為半圓直徑,D、E為圓周上兩點,且AD=DE,AE與BD交于點C,則圖中與∠BCE相等的角有( )
A.2個
B.3個
C.4個
D.5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程(x﹣3)(x﹣2)=m2
(1)求證:對于任意實數(shù)m,方程總有兩個不相等的實數(shù)根;
(2)若方程的一個根是1,求m的值及方程的另一個根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列一元一次方程解應(yīng)用題:
學(xué)生在素質(zhì)教育基地進行社會實踐活動,幫助農(nóng)民伯伯采摘了黃瓜和茄子共80千克,了解到這些蔬菜的種植成本共180元,還了解到如下信息:
(1)求采摘的黃瓜和茄子各多少千克?
(2)這些采摘的黃瓜和茄子可賺多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道,可以理解為,它表示:數(shù)軸上表示數(shù)a的點到原點的距離,這是絕對值的幾何意義。進一步地,數(shù)軸上的兩個點A,B分別用數(shù)表示,那么A,B兩點之間的距離為,反過來,式子的幾何意義是:數(shù)軸上表示數(shù)的點和表示數(shù)的點之間的距離。利用此結(jié)論,的意義就是數(shù)軸上表示數(shù)的點到表示-2和表示3的點的距離之和是5,若是整數(shù),則符合的的個數(shù)是( )
A. 6 B. 5 C. 4 D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=﹣(x﹣h)2+1(為常數(shù)),在自變量x的值滿足1≤x≤3的情況下,與其對應(yīng)的函數(shù)值y的最大值為﹣5,則h的值為( )
A.3﹣ 或1+
B.3﹣ 或3+
C.3+ 或1﹣
D.1﹣ 或1+
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com