【題目】如圖,在平行四邊形ABCD中,點(diǎn)E為BC的中點(diǎn),AE與對角線BD交于點(diǎn)F.
(1)求證:DF=2BF;
(2)當(dāng)∠AFB=90°且tan∠ABD=時(shí), 若CD=,求AD長.
【答案】(1)證明見解析;(2)
【解析】(1)由四邊形ABCD為平行四邊形得出AD//BC,證得△BEF∽△DAF即可得出結(jié)論;
(2)在Rt△ABF中,利用勾股定理求出AB、DF 即可得到AD的長.
(1)證明:∵四邊形ABCD為平行四邊形
∴AD//BC,AD=BC,AB=CD
∵點(diǎn)E為BC的中點(diǎn)
∴BE=BC=A D
∵AD//BC,∴△BEF∽△DAF
∴
∴DF=2BF
(2)解:∵CD=
∴AB=CD=
∵在Rt△ABF中,∠AFB=90°
∴設(shè)AF=x,則BF=2x
∴AB = =, x =
∴x=1,AF=1,BF=2
∵DF=2BF
∴DF=4
∴ AD = =.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程(a﹣1)x2﹣2x+1=0有兩個(gè)不相等的實(shí)數(shù)根,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】配方法解方程x2+8x+7=0,則方程可化為( )
A.(x﹣4)2=9B.(x+4)2=9C.(x﹣8)2=16D.(x+8)2=16
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列給出的四個(gè)命題:
①若|a|=|b|,則a|a|=b|b|;②若a2﹣5a+5=0,則 ;③(a﹣1) =
④若方程x2+px+q=0的兩個(gè)實(shí)根中有且只有一個(gè)根為0,那么p≠0,q=0.
其中是真命題是( )
A.①②
B.②③
C.②④
D.③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊△ABC中,點(diǎn)D為邊BC的中點(diǎn),以AD為邊作等邊△ADE,連接BE.求證:BE=BD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】菱形ABCD的一條對角線長為6,邊AB的長是方程x2-7x+12=0的一個(gè)根,則菱形ABCD的周長為( )
A. 12 B. 14 C. 16 D. 24
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com