【題目】定義:我們把對角線相等的四邊形叫做和美四邊形.

請舉出一種你所學過的特殊四邊形中是和美四邊形的例子.

如圖1,E,F,G,H分別是四邊形ABCD的邊AB,BC,CD,DA的中點,已知四邊形EFGH是菱形,求證:四邊形ABCD是和美四邊形;

如圖2,四邊形ABCD是和美四邊形,對角線AC,BD相交于O,E、F分別是AD、BC的中點,請?zhí)剿?/span>EFAC之間的數(shù)量關(guān)系,并證明你的結(jié)論.

【答案】(1)矩形;(2)證明見解析;(3),證明見解析.

【解析】

(1)等腰梯形、矩形、正方形,任選一個即可;

(2)根據(jù)三角形中位線性質(zhì)可得

(3)連接BE并延長至M,使,連接DM、AM、CM先證四邊形MABD是平行四邊形,,,是等邊三角形,,由三角形中位線性質(zhì)得

解:矩形的對角線相等,

矩形是和美四邊形;

如圖1,連接AC、BD,

,FG,H分別是四邊形ABCD的邊AB,BCCD,DA的中點,

,

四邊形EFGH是菱形,

,

,

四邊形ABCD是和美四邊形;

,

證明:如圖2,連接BE并延長至M,使,連接DMAM、CM

,

四邊形MABD是平行四邊形,

,,

是等邊三角形,

,

中,,,

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c與直線y= x+2交于C、D兩點,其中點C在y軸上,點D的坐標為(3, ).點P是y軸右側(cè)的拋物線上一動點,過點P作PE⊥x軸于點E,交CD于點F.

(1)求拋物線的解析式;
(2)若點P的橫坐標為m,當m為何值時,以O、C、P、F為頂點的四邊形是平行四邊形?請說明理由.
(3)若存在點P,使∠PCF=45°,請直接寫出相應的點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,O為直線AB上一點,∠AOC=50°,OD平分∠AOC,DOE=90°.

(1)請你數(shù)一數(shù),圖中有多少個小于平角的角;

(2)求出∠BOD的度數(shù);

(3)請通過計算說明OE是否平分∠BOC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點A,B在數(shù)軸上對應的數(shù)分別為a,b,且|a+4|+(b-2)2=0,點A,B之間的距離記作AB.

(1)線段AB的長為 ;(直接寫出結(jié)果)

(2)若動點P在數(shù)軸上對應的數(shù)為x.

①當PA+PB的值最小時,則奇數(shù)x的值為 ;(直接寫出結(jié)果)

②當PA+PB=14時,求x的值;

(3)當動點P在點A的左側(cè),M,N分別是PA,PB的中點,當點P在A的左側(cè)移動時,聰明的小明同學在計算PM+PN和PN-PM的值時發(fā)現(xiàn):其中只有一個的值是不變的,請你判斷出哪一個的值不變,并求這個值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點Ax軸上的一個動點,點Cy軸上,以AC為對角線畫正方形ABCD,已知點C的坐標是,設點A的坐標為

時,正方形ABCD的邊長______

連結(jié)OD,當時,______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】從﹣3,﹣1,1,3這五個數(shù)中,隨機抽取一個數(shù),記為a,若數(shù)a使關(guān)于x的不等式組 無解,且使關(guān)于x的分式方程 =﹣1有整數(shù)解,那么這5個數(shù)中所有滿足條件的a的值之和是(
A.﹣2
B.﹣3
C.-
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠AOC為直角,OC是∠BOD的平分線,且∠AOB=57.65°,則∠AOD的度數(shù)是( )

A. 122°20′ B. 122°21′ C. 122°22′ D. 122°23′

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們規(guī)定運算符號的意義是:當ab時,ab=a﹣b;當ab時,ab=a+b

1)計算:61=   ;(﹣32=   ;

2棍據(jù)運算符號的意義且其他運算符號意義不變的條件下,

①計算:﹣14+15×[]3223÷7),

②若x,y在數(shù)軸上的位置如圖所示,

a.填空:x2+1   y(填):

b.化簡:[x2+x+1x+y]+[y﹣x2y+2]

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AE是半圓O的直徑,弦AB=BC=2 ,弦CD=DE=2,連結(jié)OB,OD,求圖中兩個陰影部分的面積和.

查看答案和解析>>

同步練習冊答案