【題目】四邊形ABCD 中,AB=3,BC=4,E,F(xiàn) 是對(duì)角線 AC上的兩個(gè)動(dòng)點(diǎn),分別從 A,C 同時(shí)出發(fā), 相向而行,速度均為 1cm/s,運(yùn)動(dòng)時(shí)間為 t 秒,當(dāng)其中一個(gè)動(dòng)點(diǎn)到達(dá)后就停止運(yùn)動(dòng).
(Ⅰ)若 G,H 分別是 AB,DC 中點(diǎn),求證:四邊形 EGFH 始終是平行四邊形.
(Ⅱ)在(1)條件下,當(dāng) t 為何值時(shí),四邊形 EGFH 為矩形.
(Ⅲ)若 G,H 分別是折線 A﹣B﹣C,C﹣D﹣A 上的動(dòng)點(diǎn),與 E,F(xiàn) 相同的速度同時(shí)出發(fā),當(dāng) t 為何值時(shí),四邊形 EGFH 為菱形.

【答案】(Ⅰ)∵四邊形 ABCD 是矩形,
∴AB=CD,AB∥CD,AD∥BC,∠B=90°,
∴AC= =5,∠GAF=∠HCE,
∵G,H 分別是 AB,DC 中點(diǎn),
∴AG=BG,CH=DH,
∴AG=CH,
∵AE=CF,
AFG 和CEH中,

∴△AFG≌△CEH(SAS),
∴GF=HE,
同理:GE=HF,
∴四邊形 EGFH 是平行四邊形.
(Ⅱ) 由(1)得:BG=CH,BG∥CH,
∴四邊形 BCHG 是平行四邊形,
∴GH=BC=4,當(dāng) EF=GH=4 時(shí),平行四邊形 EGFH 是矩形,分兩種情況:
①AE=CF=t,EF=5﹣2t=4, 解得:t=0.5;
②AE=CF=t,EF=5﹣2(5﹣t)=4, 解得:t=4.5;
綜上所述:當(dāng) t 為 0.5s 或 4.5s 時(shí),四邊形 EGFH 為矩形.
(Ⅲ)連接 AG、CH,如圖所示:
∵四邊形 EGFH 為菱形,
∴GH⊥EF,OG=OH,OE=OF,
∴OA=OC,AG=AH,
∴四邊形 AGCH 是菱形,
∴AG=CG,
設(shè) AG=CG=x,則 BG=4﹣x, 由勾股定理得:AB2+BG2=AG2 , 即 32+(4﹣x)2=x2
解得:x= ,
∴BG=4﹣ =
∴AB+BG=3+ = ,
即 t 為 s 時(shí),四邊形 EGFH 為菱形.

【解析】(Ⅰ)由矩形的性質(zhì)得出AB=CD,AB∥CD,AD∥BC,∠B=90°,由勾股定理求出AC=5,由SAS證明△AFG≌△CEH,得出GF=HE,同理得出GE=HF,即可得出結(jié)論;
(Ⅱ)先證明四邊形BCHG是平行四邊形,得出GH=BC=4,當(dāng)對(duì)角線EF=GH=4時(shí),平行四邊形EGFH是矩形,分兩種情況:①AE=CF=t,得出EF=5-2t=4,解方程即可;②AE=CF=t,得出EF=5-2(5-t)=4,解方程即可;
(Ⅲ)連接AG、CH,由菱形的性質(zhì)得出GH⊥EF,OG=OH,OE=OF,得出OA=OC,AG=AH,證出四邊形AGCH是菱形,得出AG=CG,設(shè)AG=CG=x,則BG=4-x,由勾股定理得出方程,解方程求出BG,得出AB+BG= ,即可得出t的值.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解勾股定理的概念(直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2),還要掌握菱形的性質(zhì)(菱形的四條邊都相等;菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角;菱形被兩條對(duì)角線分成四個(gè)全等的直角三角形;菱形的面積等于兩條對(duì)角線長的積的一半)的相關(guān)知識(shí)才是答題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】過圓外一點(diǎn)可以作圓的______條切線;過圓上一點(diǎn)可以作圓的_____條切線;過圓內(nèi)一點(diǎn)的圓的切線______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】因式分解:

1a6ab9ab2;(2x2xy)+y2yx).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程
(1)6x﹣7=4x﹣5
(2)8x=﹣2(x+4)
(3) ﹣1=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一種藥品經(jīng)兩次降價(jià),由每盒50元調(diào)至40.5元,平均每次降價(jià)的百分率是(
A.5%
B.10%
C.15%
D.20%

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果代數(shù)式5a+3b的值為﹣4,那么代數(shù)式2(a+b)+4(2a+b)的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)軸上兩點(diǎn)A、B對(duì)應(yīng)的數(shù)分別為1、3,點(diǎn)P為數(shù)軸上一動(dòng)點(diǎn),其對(duì)應(yīng)的數(shù)為x.

(1)若點(diǎn)P到點(diǎn)A、點(diǎn)B的距離相等,點(diǎn)P對(duì)應(yīng)的數(shù)是
(2)數(shù)軸上,點(diǎn)P到點(diǎn)A、點(diǎn)B的距離之和為5,則x的值為
(3)當(dāng)點(diǎn)P以每秒1個(gè)單位長度的速度從原點(diǎn)O向左運(yùn)動(dòng),同時(shí)點(diǎn)B以每秒3個(gè)單位長度的速度沿?cái)?shù)軸向左運(yùn)動(dòng)(點(diǎn)A保持不動(dòng)),當(dāng)點(diǎn)P到點(diǎn)A、點(diǎn)B的距離相等時(shí),求運(yùn)動(dòng)時(shí)間t的值?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,長方形紙片的AB邊在y軸上,BC邊在x軸上,B與坐標(biāo)原點(diǎn)重合,折疊長方形ABCD的一邊AD,使點(diǎn)D落在BC邊的F處,折痕為AE,已知A點(diǎn)坐標(biāo)為(0,8),C點(diǎn)坐標(biāo)為(10,0). 求:E點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將下列多項(xiàng)式因式分解,結(jié)果中不含因式x-1的是(  )

A. x2-1 B. x(x-2)+(2-x) C. x2+2x+1 D. x2-2x+1

查看答案和解析>>

同步練習(xí)冊(cè)答案