【題目】如圖,在矩形ABCD中,AD=6,AB=4,點(diǎn)E、G、H、F分別在AB、BC、CD、AD上,且AF=CG=2,BE=DH=1,點(diǎn)P是直線EF、GH之間任意一點(diǎn),連接PE、PF、PG、PH,則PEF和PGH的面積和等于.

【答案】7
【解析】解:∵在矩形ABCD中,AD=6,AB=4,AF=CG=2,BE=DH=1,
∴AE=AB-BE=4-1=3,
CH=CD-DH=4-1=3,
∴AE=CH,
在△AEF與△CGH中,

∴△AEF≌△CHG(SAS),
∴EF=GH,
連接EG,F(xiàn)H,同理可得,△BGE≌△DFH,
∴EG=FH,
∴四邊形EGHF是平行四邊形,
∵△PEF和△PGH的高的和等于點(diǎn)H到直線EF的距離,
∴△PEF和△PGH的面積和= ×平行四邊形EGHF的面積,
平行四邊形EGHF的面積
=4×6- ×2×3- ×1×(6-2)- ×2×3- ×1×(6-2)
=24-3-2-3-2,
=14,
∴△PEF和△PGH的面積和= ×14=7.
故答案為7.
由已知條件易證明△AEF≌△CHG和△BGE≌△DFH,即可得四邊形EGHF是平行四邊形,則EF//GH可知△PEF和△PGH的高的和等于點(diǎn)H到直線EF的距離,從而可得△PEF和△PGH的面積和= ×平行四邊形EGHF的面積.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)O為直線AB上一點(diǎn),過O點(diǎn)作射線OC,使∠AOC:∠BOC=1:2,將一直角三角板的直角頂點(diǎn)放在點(diǎn)O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.

(1)將圖1中的三角板繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)至圖2的位置,使得ON落在射線OB上,此時(shí)三角板旋轉(zhuǎn)的角度為   度;

(2)繼續(xù)將圖2中的三角板繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)至圖3的位置,使得ON在∠AOC的內(nèi)部.試探究∠AOM與∠NOC之間滿足什么等量關(guān)系,并說明理由;

(3)在上述直角三角板從圖1逆時(shí)針旋轉(zhuǎn)到圖3的位置的過程中,若三角板繞點(diǎn)O按15°每秒的速度旋轉(zhuǎn),當(dāng)直角三角板的直角邊ON所在直線恰好平分∠AOC時(shí),求此時(shí)三角板繞點(diǎn)O的運(yùn)動(dòng)時(shí)間t的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】崇左市江州區(qū)太平鎮(zhèn)壺城社區(qū)調(diào)查居民雙休日的學(xué)習(xí)狀況,采取了下列調(diào)查方式;a:從崇左高中、太平鎮(zhèn)中、太平小學(xué)三所學(xué)校中選取200名教師;b:從不同住宅樓(即江灣花園與萬鵬住宅樓)中隨機(jī)選取200名居民;c:選取所管轄區(qū)內(nèi)學(xué)校的200名在校學(xué)生.并將最合理的調(diào)查方式得到的數(shù)據(jù)制成扇形統(tǒng)計(jì)圖和部分?jǐn)?shù)據(jù)的頻數(shù)分布直方圖.以下結(jié)論:①上述調(diào)查方式最合理的是b;②在這次調(diào)查的200名教師中,在家學(xué)習(xí)的有60人;③估計(jì)該社區(qū)2000名居民中雙休日學(xué)習(xí)時(shí)間不少于4小時(shí)的人數(shù)是1180人;④小明的叔叔住在該社區(qū),那么雙休日他去叔叔家時(shí),正好叔叔不學(xué)習(xí)的概率是0.1.其中正確的結(jié)論是( 。
A.①④
B.②④
C.①③④
D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為點(diǎn)A(﹣2,3),且拋物線y=ax2+bx+c與y軸交于點(diǎn)B(0,2).

(1)求該拋物線的解析式;
(2)是否在x軸上存在點(diǎn)P使△PAB為等腰三角形?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由;
(3)若點(diǎn)P是x軸上任意一點(diǎn),則當(dāng)PA﹣PB最大時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知ABC中,AB=AC,BAD=30°,AD=AE,求∠EDC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在ABC中,∠BCA=90°,CD是邊AB上的中線,分別過點(diǎn)C,D作BA,BC的平行線交于點(diǎn)E,且DE交AC于點(diǎn)O,連接AE.

(1)求證:四邊形ADCE是菱形;
(2)若AC=2DE,求sin∠CDB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)計(jì)算:

(2)先化簡,再求值:3a-2(a-ab)+(b-2ab),其中a,b滿足|2a+b|+(2-b) =0

(3)解方程: .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請?jiān)跈M線上填寫合適的內(nèi)容,完成下面的證明:

(1)如圖如果ABCD,求證:∠APC=∠A+∠C

證明:過PPMAB,

所以∠A=∠APM,(   

因?yàn)?/span>PMAB,ABCD(已知)

所以PMCD   

所以∠C      

因?yàn)椤?/span>APC=∠APM+∠CPM

所以∠APC=∠A+∠C   

(2)如圖,ABCD,根據(jù)上面的推理方法,直接寫出∠A+∠P+∠Q+∠C   

(3)如圖,ABCD,若∠ABPx,∠BPQy,∠PQCz,∠QCDm,則m   (用x、y、z表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一次函數(shù)y=kx+4(k≠0)的圖象稱為直線l.

(1)若直線l經(jīng)過點(diǎn)(2,0),直接寫出關(guān)于x的不等式kx+4>0的解集;

(2)若直線l經(jīng)過點(diǎn)(3,﹣2),求這個(gè)函數(shù)的表達(dá)式;

(3)若將直線l向右平移2個(gè)單位長度后經(jīng)過點(diǎn)(5,5),求k的值.

查看答案和解析>>

同步練習(xí)冊答案