【題目】如圖1,2分別是某款籃球架的實(shí)物圖與示意圖,已知ABBC于點(diǎn)B,底座BC的長(zhǎng)為1米,底座BC與支架AC所成的角∠ACB60°,點(diǎn)H在支架AF上,籃板底部支架EHBCEFEH于點(diǎn)E,已知AH長(zhǎng)米,HF長(zhǎng)米,HE長(zhǎng)1米.

(1)求籃板底部支架HE與支架AF所成的角∠FHE的度數(shù).

(2)求籃板底部點(diǎn)E到地面的距離.(結(jié)果保留根號(hào))

【答案】(1) 籃板底部支架HE與支架AF所成的角∠FHE的度數(shù)為45°;(2) 籃板底部點(diǎn)E到地面的距離是(+)米

【解析】

(1)由cos∠FHE可得答案

(2)延長(zhǎng)FECB的延長(zhǎng)線于M,過點(diǎn)AAGFMG過點(diǎn)HHNAGN,據(jù)此知GM=AB,HN=EG,Rt△ABC求得AB=BCtan60°;Rt△ANH求得HN=AHsin45°;根據(jù)EM=EG+GM可得答案

1)在Rt△EFH,cos∠FHE,∴∠FHE=45°.

籃板底部支架HE與支架AF所成的角∠FHE的度數(shù)為45°;

(2)延長(zhǎng)FECB的延長(zhǎng)線于M,過點(diǎn)AAGFMG,過點(diǎn)HHNAGN,則四邊形ABMG和四邊形HNGE是矩形,∴GM=AB,HN=EG.在Rt△ABC中,∵tan∠ACB,∴AB=BCtan60°=1,∴GM=AB.在Rt△ANH,∠FAN=∠FHE=45°,∴HN=AHsin45°,∴EM=EG+GM

籃板底部點(diǎn)E到地面的距離是()米

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若實(shí)數(shù) m、n 滿足m+nmn,且n≠0時(shí),就稱點(diǎn) Pm)為完美點(diǎn),若反比例函數(shù)y的圖象上存在兩個(gè)完美點(diǎn)A、B,且 AB4,則 k的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,將矩形OABC沿著OB對(duì)折,使點(diǎn)A落在點(diǎn)A'處,點(diǎn)B的坐標(biāo)(8,4),則點(diǎn)A'的坐標(biāo)是( )

A. (4) B. (,)

C. (, ) D. (, )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知二次函數(shù)y=mx2+3mx﹣m的圖象與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),頂點(diǎn)D和點(diǎn)B關(guān)于過點(diǎn)A的直線l:y=﹣x﹣對(duì)稱.

(1)求A、B兩點(diǎn)的坐標(biāo)及二次函數(shù)解析式;

(2)如圖2,作直線AD,過點(diǎn)BAD的平行線交直線1于點(diǎn)E,若點(diǎn)P是直線AD上的一動(dòng)點(diǎn),點(diǎn)Q是直線AE上的一動(dòng)點(diǎn).連接DQ、QP、PE,試求DQ+QP+PE的最小值;若不存在,請(qǐng)說明理由:

(3)將二次函數(shù)圖象向右平移個(gè)單位,再向上平移3個(gè)單位,平移后的二次函數(shù)圖象上存在一點(diǎn)M,其橫坐標(biāo)為3,在y軸上是否存在點(diǎn)F,使得∠MAF=45°?若存在,請(qǐng)求出點(diǎn)F坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=x+b的圖象交

于點(diǎn)A(1,4)、點(diǎn)B(-4,n).

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)求△OAB的面積;

(3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=x+b的圖象交

于點(diǎn)A(1,4)、點(diǎn)B(-4,n).

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)求△OAB的面積;

(3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在正方形ABCD中,GCD邊中點(diǎn),連接AG并延長(zhǎng)交BC邊的延長(zhǎng)線于E點(diǎn),對(duì)角線BDAGF點(diǎn).已知FG=2,則線段AE的長(zhǎng)度為( 。

A. 6 B. 8 C. 10 D. 12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù)y(k≠0,k是常數(shù))的圖象過點(diǎn)P(-3,5).

(1)求此反比例函數(shù)的解析式;

(2)在函數(shù)圖象上有兩點(diǎn)(a1,b1)和(a2,b2),若a1a2,試判斷b1b2的大小關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線yax2bxc⊙M相交于A、B、C、D四點(diǎn),其中A、B兩點(diǎn)的坐標(biāo)分別為(10),(0,-2),點(diǎn)Dx軸上且AD⊙M的直徑.點(diǎn)E⊙My軸的另一個(gè)交點(diǎn),過劣弧ED上的點(diǎn)FFH⊥AD于點(diǎn)H,且FH1.5.

(1)求點(diǎn)D的坐標(biāo)及該拋物線對(duì)應(yīng)的函數(shù)表達(dá)式;

(2)若點(diǎn)Px軸上的一個(gè)動(dòng)點(diǎn),試求出△PEF的周長(zhǎng)最小時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案