【題目】如圖,正九邊形中,,那么的長(zhǎng)是________

【答案】

【解析】

先由多邊形的內(nèi)角和定理,求出正九邊形內(nèi)角的度數(shù),由圓周角定理可求出∠CAB=20°,連接AH,作HM,GN分別垂直AEM,N,再求出AHM中各角的度數(shù),由正方形的性質(zhì)及直角三角形的性質(zhì)即可解答.

∵正九邊形內(nèi)角和為(92)×180°=1260°,

∴每個(gè)內(nèi)角為140°,

又∵AB=AC,B=140°,

∴∠CAB=(180°140°)÷2=20°,

連接AH,作HM,GN分別垂直AEM,N,

∵∠CAE=2CAB=2×20°=40°.

∴∠HAM=140°2×20°40°=60°,

∴∠AHM=30°,

設(shè)AM=EN=x,MN=y(tǒng),

四邊形HGNM是矩形,所以HG=y(tǒng),即正九邊形邊長(zhǎng)為y,

RtAHM中,∠AHM=30°,

AH=2AM=2x,

AB+AC=y(tǒng)+2x,

x+y+x=1,

2x+y=1,

AB+AC=1.

故答案為:1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖、是兩條垂直的公路,設(shè)計(jì)時(shí)想在拐彎處用一段圓弧形彎道把它們連接起來(圓弧在、兩處分別與道路相切),測(cè)得米,

在圖中畫出圓弧形彎道的示意圖(用尺規(guī)作圖,保留作圖痕跡,不寫作法與證明);

計(jì)算彎道部分的長(zhǎng)度(結(jié)果用表示并保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=(m+1x+的圖象與x軸的負(fù)半軸相交于點(diǎn)A,與y軸相交于點(diǎn)B,且OAB的面積為

1)求m的值及點(diǎn)A的坐標(biāo);

2)過點(diǎn)B作直線BPx軸的正半軸相交于點(diǎn)P,且OP3OA,求直線BP的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明家住房結(jié)構(gòu)如圖所示(x、y的單位:米).

1)請(qǐng)用含x、y的代數(shù)式表示該住房的面積;

2)小明爸爸打算把臥室鋪上木地板,其余地面都鋪上地磚,至少要買多少平方米的木地板材料?(用含x、y的代數(shù)式表示)如果每平方米地磚的價(jià)格是a元,則購(gòu)買地磚至少需要多少錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題背景:在ABC中,ABBC、AC三邊的長(zhǎng)分別為、,求這個(gè)三角形的面積小輝同學(xué)在解答這道題時(shí),先建立一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為1),再在網(wǎng)格中畫出格點(diǎn)ABC(即ABC三個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)處),如圖1所示.這樣不需求ABC的高,而借用網(wǎng)格就能計(jì)算出它的面積.

1)請(qǐng)你利用上述方法求出ABC的面積.

2)在圖2中畫DEF,DE、EF、DF三邊的長(zhǎng)分別為、、

①判斷三角形的形狀,說明理由.

②求這個(gè)三角形的面積.(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示是某公園為迎接“中國(guó)–南亞博覽會(huì)”設(shè)置的一休閑區(qū).,弧的半徑長(zhǎng)是米,的中點(diǎn),點(diǎn)在弧上,,則圖中休閑區(qū)(陰影部分)的面積是( )

A. 2 B. 2 C. 2 D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,AB=AC,在BC邊上有兩動(dòng)點(diǎn)D、E,滿足2∠DAE=∠BAC,將AECA旋轉(zhuǎn),使得ACAB重合,點(diǎn)E落到點(diǎn)E

1)求證:DAE’=∠DAE;

2)當(dāng)BED=20°時(shí),求DEA的度數(shù);

3)當(dāng)BD=1,EC=2,BED又為直角三角形時(shí),求BAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+4x軸于點(diǎn)A(﹣2,0)和B(BA右側(cè)),交y軸于點(diǎn)C,直線y=經(jīng)過點(diǎn)B,交y軸于點(diǎn)D,且DOC中點(diǎn).

(1)求拋物線的解析式;

(2)若P是第一象限拋物線上的一點(diǎn),過P點(diǎn)作PHBDH,設(shè)P點(diǎn)的橫坐標(biāo)是t,線段PH的長(zhǎng)度是d,求dt的函數(shù)關(guān)系式;

(3)在(2)的條件下,當(dāng)d=時(shí),將射線PH繞著點(diǎn)P順時(shí)針方向旋轉(zhuǎn)45°交拋物線于點(diǎn)Q,求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠ABC90°,ABBC,∠ABC的平分線BD交過點(diǎn)C且平行AB的直線于D點(diǎn);AEBDBDE點(diǎn),連接CE并延長(zhǎng),交過A點(diǎn)且平行BC的直線于F點(diǎn),ADCF交于O點(diǎn).現(xiàn)得到如下兩個(gè)結(jié)論:①∠DAE22.5°;②DE=(2-BE;

請(qǐng)幫助判斷結(jié)論的真假,并說明你的理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案