【題目】請將下列證明過程補充完整:

已知:如圖,點PCD上,已知∠BAP+∠APD=180°,∠1=∠2

求證:∠E=∠F

證明:∵∠BAP+∠APD=180°已知

∴∠BAP=

∵∠1=∠2(已知)

∴∠BAP﹣ = ﹣∠2

即∠3= (等式的性質(zhì))

∴AE∥PF

∴∠E=∠F

【答案】答案見解析

【解析】分析:根據(jù)平行線的性質(zhì)以及判定定理進行填空即可得出答案.

詳解:∵∠BAP+∠APD=180°(已知)

AB CD同旁內(nèi)角互補,兩直線平行

∴∠BAP= ∠APC 兩直線平行,內(nèi)錯角相等

又∵∠1=∠2(已知)

∴∠BAP﹣ ∠1 = ∠APC ﹣∠2

即∠3= ∠4 (等式的性質(zhì))

∴AE∥PF內(nèi)錯角相等,兩直線平行

∴∠E=∠F兩直線平行,內(nèi)錯角相等

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖所示,AB//CD,點EAD的延長線上,∠EDC與∠B互為補角.

(1)問AD,BC是否平行?請說明理由;

(2)如果∠EDC=72°,∠1=∠2=2∠CAB,求∠CAF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+2x+3與y軸交于點C,點D(0,1),點P是拋物線上的動點.若△PCD是以CD為底的等腰三角形,則點P的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小敏從A地出發(fā)向B地行走,同時小聰從B地出發(fā)向A地行走,如圖所示,相交于點P的兩條線段l1、l2分別表示小敏、小聰離B地的距離y(km)與已用時間x(h)之間的關(guān)系,則小敏、小聰行走的速度分別是( 。

A. 3km/h4km/h B. 3km/h3km/h

C. 4km/h4km/h D. 4km/h3km/h

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,點O是邊BC的中點,連接DO并延長,交AB延長線于點E,連接BDEC

(1)求證:四邊形BECD是平行四邊形;

(2)若∠A=50°,則當(dāng)∠BOD= ______ °時,四邊形BECD是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AC與BD相交于點O,E是OD的中點,連接AE并延長交DC于點F,則DF:FC=(
A.1:4
B.1:3
C.1:2
D.1:1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的半徑OD⊥弦AB于點C,連結(jié)AO并延長交⊙O于點E,連結(jié)EC.若AB=8,CD=2,則EC的長為(
A.2
B.8
C.2
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知:ABCD,點EF分別在ABCD上,且OEOF

(1)求證:∠1+∠2=90°;

(2)如圖2,分別在OE,CD上取點GH,使FO平分∠CFG,EO平分∠AEH,求證:FGEH

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,所有正三角形的一邊平行于x軸,一頂點在y軸上,從內(nèi)到外,它們的邊長依次為2,4,6,8,…,頂點依次用A1、A2、A3、A4、…表示,其中A1A2與x軸、底邊A1A2與A4A5、A4A5與A7A8、…均相距一個單位,則A2017的坐標(biāo)是

查看答案和解析>>

同步練習(xí)冊答案