【題目】在△ABC和△DEC中,AC=BC,DC=EC,∠ACB=∠ECD=90°.
(1)如圖1,當(dāng)點(diǎn)A、C、D在同一條直線上時(shí),AC=12,EC=5,
①求證:AF⊥BD; ②求AF的長(zhǎng)度;
(2)如圖2,當(dāng)點(diǎn)A、C、D不在同一條直線上時(shí),求證:AF⊥BD.
【答案】(1)①證明見(jiàn)解析;②;(2)證明見(jiàn)解析.
【解析】試題分析:(1)①證明△ACE≌△BCD,得到∠1=∠2,由對(duì)頂角相等得到∠3=∠4,所以∠BFE=∠ACE=90°,即可得結(jié)論;②根據(jù)勾股定理求出BD,利用△ABD的面積的兩種表示方法,即可解答;(2)證明△ACE≌△BCD,得到∠1=∠2,又由∠3=∠4,得到∠BFA=∠BCA=90°,即可得結(jié)論.
試題解析:
(1)①證明:如圖1,
∵在△ACE和△BCD中,
∴△ACE≌△BCD,
∴∠1=∠2,
∵∠3=∠4,
∴∠BFE=∠ACE=90°,
∴AF⊥BD.
②∵∠ECD=90°,BC=AC=12,DC=EC=5,
∴根據(jù)勾股定理得:BD=13,
∵S△ABD=ADBC=BDAF,
即
∴AF=.
(2)證明:如圖2,
∵∠ACB=∠ECD,
∴∠ACB+∠ACD=∠ECD+∠ACD,
∴∠BCD=∠ACE,
在△ACE≌△BCD中
∴△ACE≌△BCD(SAS),
∴∠1=∠2,
∵∠3=∠4,
∴∠BFA=∠BCA=90°,
∴AF⊥BD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)把下面證明過(guò)程補(bǔ)充完整:
已知:如圖,∠ADC=∠ABC,BE、DF分別平行∠ABC、∠ADC,且∠1=∠2.
求證:∠A=∠C.
證明:因?yàn)?/span>BE、DF分別平分∠ABC、∠ADC,( ).
所以∠1=∠ABC,∠3=∠ADC( ).
因?yàn)椤?/span>ABC=∠ADC(已知),
所以∠1=∠3( ),
因?yàn)椤?/span>1=∠2(已知),
所以∠2=∠3( ).
所以 ∥ ( ).
所以∠A+∠ =180°,∠C+∠ =180°( ).
所以∠A=∠C( ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,E為AC上一點(diǎn),且AE=BC,過(guò)點(diǎn)A作AD⊥CA,垂足為A,且AD=AC,AB、DE交于點(diǎn)F.試判斷線段AB與DE的數(shù)量關(guān)系和位置關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】推理填空:
如圖,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:
∵∠1=∠2(已知),且∠1=∠4(____________),
∴∠2=∠4(等量代換),
∴CE∥BF(__________________________),
∴∠________=∠3(______________________).
又∵∠B=∠C(已知),
∴∠3=∠B(等量代換).
∴AB∥CD(__________________________).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O直徑AB和弦CD相交于點(diǎn)E,AE=2,EB=6,∠DEB=30°,求弦CD長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠ABC=90°,以AB為直徑的⊙O交AB于點(diǎn)D,點(diǎn)E為BC的中點(diǎn),連接OD、DE.
⑴ 求證:OD⊥DE.
⑵ 若∠BAC=30°,AB=8,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,池塘邊有塊長(zhǎng)為20m,寬為10m的長(zhǎng)方形土地,現(xiàn)在將其余三面留出寬都是xm的小路,中間余下的長(zhǎng)方形部分做菜地,用含x的式子表示:
(1)菜地的長(zhǎng)a= m,菜地的寬b= m;菜地的周長(zhǎng)C= m;
(2)求當(dāng)x=1m時(shí),菜地的周長(zhǎng)C.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,延長(zhǎng)AB至點(diǎn)D,使DB=AB,連接CD,以CD為直角邊作等腰直角三角形CDE,其中∠DCE=90°,連接BE.
(1)求證:△ACD≌△BCE;
(2)若AC=3,求BE的長(zhǎng)度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com