【題目】如圖,拋物線yax2+2x+c經(jīng)過(guò)A(﹣1,0),B兩點(diǎn),且與y軸交于點(diǎn)C0,3),拋物線與直線y=﹣x1交于AE兩點(diǎn).

1)求拋物線的解析式;

2)坐標(biāo)軸上是否存在一點(diǎn)Q,使得AQE是以AE為底邊的等腰三角形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)Q的坐標(biāo);若不存在,說(shuō)明理由.

3P點(diǎn)在x軸上且位于點(diǎn)B的左側(cè),若以P,BC為頂點(diǎn)的三角形與ABE相似,求點(diǎn)P的坐標(biāo).

【答案】1y=﹣x2+2x+3;(2)存在;Q14,0),Q20,﹣4);(3)(,0)或(﹣0).

【解析】

1)將A、C的坐標(biāo)代入yax2+2x+c求出ac即可得到解析式;

2)聯(lián)立方程組求出E點(diǎn)坐標(biāo),分Qx軸和y軸上兩種情況討論,分別根據(jù)QA2QE2求出坐標(biāo)即可;

3)過(guò)點(diǎn)EEHx軸于點(diǎn)H,根據(jù)點(diǎn)E的坐標(biāo),分別求出AHEH5,AE5,∠BAE45°,以及OBOC3,∠ABC45°,AB4,BC=3,所以只可能存在PBC∽△BAEPBC∽△EAB兩種情況,利用相似三角形對(duì)應(yīng)邊成比例即可求得點(diǎn)P的坐標(biāo).

解:(1)將A(﹣10),C0,3)代入yax2+2x+c,

,

解得,,

∴拋物線的解析式為:y=﹣x2+2x+3,

故答案為:y=﹣x2+2x+3

2)存在.

聯(lián)立,

解得,,

E4,﹣5),

如圖1,當(dāng)點(diǎn)Qx軸上時(shí),設(shè)Qm,0),

AE為底邊,

QAQE,

QA2QE2

即(m+1252+m42,

解得,m4,

Q14,0);

當(dāng)點(diǎn)Qy軸上時(shí),設(shè)Q0,n),

AE為底邊,

QAQE,

QA2QE2,

n2+1242+n+52,

解得,n=﹣4,

Q20,﹣4),

綜上所述,Q14,0),Q20,﹣4),

故答案為:存在;Q14,0),Q20,﹣4

3)如圖2,過(guò)點(diǎn)EEHx軸于點(diǎn)H,

A(﹣1,0),E4,﹣5),

AHEH5,AE5,∠BAE45°,

OBOC3

∴∠ABC45°,AB4BC3,

設(shè)Pt,0),則BP3t,

∵∠BAE=∠ABC45°,

∴只可能存在△PBC∽△BAE和△PBC∽△EAB兩種情況,

當(dāng)△PBC∽△BAE時(shí),,

,

t,

P1,0);

當(dāng)△PBC∽△EAB時(shí),,

,

t=﹣,

P2(﹣,0),

綜上所述,點(diǎn)P的坐標(biāo)為(,0)或(﹣,0),

故答案為:(,0)或(﹣,0).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于x的方程(2-a)x2+5x-3=0有實(shí)數(shù)解,則整數(shù)a的最大值是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙OABC的外接圓,AB為直徑, ODBC交⊙O于點(diǎn)D,交AC于點(diǎn)E,連接ADBD,CD

1)求證:AD=CD;

2)若AB=10cosABC=,求tanDBC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知圓O是正六邊形ABCDEF外接圓,直徑BE=8,點(diǎn)G、H分別在射線CD、EF上(點(diǎn)G不與點(diǎn)C、D重合),且∠GBH=60°,設(shè)CG=x,EH=y

1)如圖①,當(dāng)直線BG經(jīng)過(guò)弧CD的中點(diǎn)Q時(shí),求∠CBG的度數(shù);

2)如圖②,當(dāng)點(diǎn)G在邊CD上時(shí),試寫(xiě)出y關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出x的取值范圍;

3)聯(lián)結(jié)AH、EG,如果△AFH與△DEG相似,求CG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“互聯(lián)網(wǎng)+”時(shí)代,網(wǎng)上購(gòu)物備受消費(fèi)者青睞,某網(wǎng)店專售一款休閑褲,其成本為每條40元,當(dāng)售價(jià)為每條80元時(shí),每月可售價(jià)100條.為了吸引更多顧客,該網(wǎng)店采取降價(jià)措施.據(jù)市場(chǎng)調(diào)查反映:銷(xiāo)售單價(jià)每降元,則每月可多銷(xiāo)售5條.設(shè)每條褲子的售價(jià)為(為正整數(shù)),每月的銷(xiāo)售量為條.

1)直接寫(xiě)出的函數(shù)關(guān)系式;

2)設(shè)該網(wǎng)店每月獲得的利潤(rùn)為元,當(dāng)銷(xiāo)售單價(jià)為多少元時(shí),每月獲得的利潤(rùn)最大,最大利潤(rùn)是多少?

3)該網(wǎng)店店主熱心公益事業(yè),決定每月從利潤(rùn)中捐出200元資助貧困學(xué)生,為了保證捐款后每月利潤(rùn)不低于3800元,且讓消費(fèi)者得到最大的實(shí)惠,該如何確定休閑褲的銷(xiāo)售單價(jià)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線軸于點(diǎn),交軸于,拋物線經(jīng)過(guò)點(diǎn)、,且與軸交于另一點(diǎn)

1)求拋物線的解析式;

2)點(diǎn)為第一象限內(nèi)拋物線上一動(dòng)點(diǎn),過(guò)點(diǎn)軸于點(diǎn),交直線于點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為

①過(guò)點(diǎn)于點(diǎn),設(shè)的長(zhǎng)度為,請(qǐng)用含的式子表示,并求出當(dāng)取得最大值時(shí),點(diǎn)的坐標(biāo).

②在①的條件下,當(dāng)直線到直線的距離等于時(shí),請(qǐng)直接寫(xiě)出符合要求的直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(問(wèn)題)用n個(gè)2×1矩形,鑲嵌一個(gè)n矩形,有多少種不同的鑲嵌方案?(n矩形表示矩形的鄰邊是2n

(探究)不妨假設(shè)有an種不同的鑲嵌方案.為探究an的變化規(guī)律,我們采取一般問(wèn)題特殊化的策略,先從最簡(jiǎn)單情形入手,再逐次遞進(jìn),最后猜想得出結(jié)論.

探究一:用1個(gè)2×1矩形,鑲嵌一個(gè)2×1矩形,有多少種不同的鑲嵌方案?

如圖(1),顯然只有1種鑲嵌方案.所以,a11

探究二:用2個(gè)2×1矩形,鑲嵌一個(gè)2×2矩形,有多少種不同的鑲嵌方案?

如圖(2),顯然只有2種鑲嵌方案.所以,a22

探究三:用3個(gè)2×1矩形,鑲嵌一個(gè)2×3矩形,有多少種不同的鑲嵌方案?

一類(lèi):在探究一每個(gè)鑲嵌圖的右側(cè)再橫著鑲嵌2個(gè)2×1矩形,有1種鑲嵌方案;

二類(lèi):在探究二每個(gè)鑲嵌圖的右側(cè)再豎著鑲嵌1個(gè)2×1矩形,有2種鑲嵌方案;

如圖(3).所以,a31+23

探究四:用4個(gè)2×1矩形,鑲嵌一個(gè)2×4矩形,有多少種不同的鑲嵌方案?

一類(lèi):在探究二每個(gè)鑲嵌圖的右側(cè)再橫著鑲嵌2個(gè)2×1矩形,有   種鑲嵌方案;

二類(lèi):在探究三每個(gè)鑲嵌圖的右側(cè)再豎著鑲嵌1個(gè)2×1矩形,有   種鑲嵌方案;

所以,a4   

探究五:用5個(gè)2×1矩形,鑲嵌一個(gè)2×5矩形,有多少種不同的鑲嵌方案?

(仿照上述方法,寫(xiě)出探究過(guò)程,不用畫(huà)圖)

……

(結(jié)論)用n個(gè)2×1矩形,鑲嵌一個(gè)n矩形,有多少種不同的鑲嵌方案?

(直接寫(xiě)出anan1,an2的關(guān)系式,不寫(xiě)解答過(guò)程).

(應(yīng)用)用10個(gè)2×1矩形,鑲嵌一個(gè)2×10矩形,有   種不同的鑲嵌方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在中,,,點(diǎn)由點(diǎn)出發(fā)沿方向向點(diǎn)勻速運(yùn)動(dòng),同時(shí)點(diǎn)由點(diǎn)出發(fā)沿方向向點(diǎn)勻速運(yùn)動(dòng),它們的速度均為.連接,設(shè)運(yùn)動(dòng)時(shí)間為

1)當(dāng)為何值時(shí),?

2)設(shè)的面積為,求的函數(shù)關(guān)系式,并求出當(dāng)為何值時(shí),取得最大值?的最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】據(jù)交管部門(mén)統(tǒng)計(jì),高速公路超速行駛是引發(fā)交通事故的主要原因.我縣某校數(shù)學(xué)課外小組的幾個(gè)同學(xué)想嘗試用自己所學(xué)的知識(shí)檢測(cè)車(chē)速,渝黔高速公路某路段的限速是:每小時(shí)80千米(即最高時(shí)速不超過(guò)80千米),如圖,他們將觀測(cè)點(diǎn)設(shè)在到公路l的距離為0.1千米的P處.這時(shí),一輛轎車(chē)由綦江向重慶勻速直線駛來(lái),測(cè)得此車(chē)從A處行駛到B處所用的時(shí)間為3秒(注:3秒=小時(shí)),并測(cè)得∠APO59°,∠BPO45°.試計(jì)算AB并判斷此車(chē)是否超速?(精確到0.001).(參考數(shù)據(jù):sin59°≈0.8572,cos59°≈0.5150,tan59°≈1.6643

查看答案和解析>>

同步練習(xí)冊(cè)答案