【題目】如圖,在 11×16 的網(wǎng)格圖中,△ABC 三個頂點坐標分別為 A(﹣4,0),B(﹣1,1),C(﹣2,3).
(1)請畫出△ABC 沿x 軸正方向平移4個單位長度所得到的△A1B1C1;
(2)以原點O為位似中心,將(1)中的△A1B1C1 放大為原來的3倍得到△A2B2C2,請在第一象限內(nèi)畫出△A2B2C2,并直接寫出△A2B2C2 三個頂點的坐標.
【答案】(1)畫圖見解析;(2)畫圖見解析,A2(0,0),B2(9,3),C2(6,9).
【解析】
(1)直接利用平移的性質(zhì)得出對應(yīng)點位置進而得出答案;
(2)利用位似圖形的性質(zhì)得出對應(yīng)點位置進而得出答案, 平面直角坐標系中,如果位似變換是以原點為位似中心,相似比為3,位似圖形對應(yīng)點的坐標比等于:±3,本題再第一象限所以只取位似圖形對應(yīng)點的坐標比等于3,求出坐標即可畫出圖形.
(1)如圖所示:△A1B1C1,即為所求;
(2)如圖所示:△A2B2C2,即為所求,△A2B2C2 三個頂點的坐標:A2(0,0),B2(9,3),C2(6,9).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】制作一種產(chǎn)品,需先將材料加熱達到60℃后,再進行操作,設(shè)該材料溫度為y(℃)從加熱開始計算的時間為x(min).據(jù)了解,當(dāng)該材料加熱時,溫度y與時間x成一次函數(shù)關(guān)系:停止加熱進行操作時,溫度y與時間x成反比例關(guān)系(如圖).已知在操作加熱前的溫度為15℃,加熱5分鐘后溫度達到60℃.
(1)分別求出將材料加熱和停止加熱進行操作時,y與x的函數(shù)關(guān)系式;
(2)根據(jù)工藝要求,當(dāng)材料的溫度低于15℃時,須停止操作,那么從開始加熱到停止操作,共經(jīng)歷了多少時間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x與雙曲線y=(x>0)交于點A,將直線y=x向右平移3個單位后,與雙曲線y=(x>0)交于點B,與x軸交于點C,若=2,則k=( 。
A. B. 4 C. 6 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列關(guān)于函數(shù)的四個命題:
①當(dāng)x=0時,y有最小值6;
② m為任意實數(shù),x=2-m時的函數(shù)值大于x=2+m時的函數(shù)值;
③若函數(shù)圖象過點(a,m0) 和(b, m0+1),其中a>0,b>2,則a<b;
④若m>2,且m是整數(shù),當(dāng)m≤x≤m+1 時,y的整數(shù)值有(2m-2)個.
其中真命題有______個.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2016年3月國際風(fēng)箏節(jié)期間,王大伯決定銷售一批風(fēng)箏,經(jīng)市場調(diào)研:蝙蝠型風(fēng)箏進價每個為10元,當(dāng)售價每個為12元時,銷售量為180個,若售價每提高1元,銷售量就會減少10個,請回答以下問題:
(1)用表達式表示蝙蝠型風(fēng)箏銷售量y(個)與售價x(元)之間的函數(shù)關(guān)系(12≤x≤30);
(2)王大伯為了讓利給顧客,并同時獲得840元利潤,售價應(yīng)定為多少?
(3)當(dāng)售價定為多少時,王大伯獲得利潤W最大,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知△ABC中,AB=10cm,AC=8cm,BC=6 cm ,如果點P由B出發(fā)沿BA方向向點A勻速運動,同時點Q由A出發(fā)沿AC方向向點C勻速運動,它們的速度均為2cm /s,連接PQ,設(shè)運動的時間為t(單位:s)(0≤t≤4).解答下列問題:
(1)當(dāng)t為何值時,PQ∥BC.
(2)是否存在某時刻t,使線段PQ恰好把△ABC的面積平分?若存在求出此時t的值;若不存在,請說明理由.
(3)如圖2,把△APQ沿AP翻折,得到四邊形AQPQ′.那么是否存在某時刻t使四邊形AQPQ′為菱形?若存在,求出此時菱形的面積;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C為⊙O上一點,AE和過點C的切線互相垂直,垂足為E,AE交⊙O于點D,直線EC交AB的延長線于點P,連接AC、BC.
(1)求證:AC平分∠BAD.
(2)求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一筆直的海岸線上有A、B兩上觀測站,A在B的正東方向,BP=6(單位:km).有一艘小船停在點P處,從A測得小船在北偏西60°的方向,從B測得小船在北偏東45°的方向.
(1)求A、B兩觀測站之間的距離;
(2)小船從點P處沿射線AP的方向進行沿途考察,求觀測站B到射線AP的最短距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com