【題目】先化簡,再求值:
(1)(3a2-ab+7)-(5ab-4a2+7),其中, a=2,b=;
(2)3(ab-5b2+2a2)-(7ab+16a2-25b2),其中|a-1|+(b+1)2=0.
【答案】(1)7a2-6ab,24;(2)-10a2+10b2-4ab,4.
【解析】(1)先去括號(hào),再合并同類項(xiàng),最后代入求值;(2)先根據(jù)幾個(gè)非負(fù)數(shù)的和為零,則這幾個(gè)非負(fù)數(shù)均為零可求出a、b的值,再前面式子進(jìn)行化簡求值.
解:(1)原式=3a2-ab+7-5ab+4a2-7=7a2-6ab.
當(dāng)a=2,b=時(shí),原式=28-4=24.
(2)因?yàn)?/span>|a-1|+(b+1)2=0,而|a-1|≥0,(b+1)2≥0,
所以a-1=0,b+1=0,即a=1,b=-1.
原式=3ab-15b2+6a2-7ab-16a2+25b2=-10a2+10b2-4ab.
當(dāng)a=1,b=-1時(shí),原式=-10×12+10×(-1)2-4×1×(-1)=-10+10+4=4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,是真命題的是( )
A. 同位角相等 B. 鄰補(bǔ)角一定互補(bǔ)
C. 相等的角是對(duì)頂角 D. 有且只有一條直線與已知直線垂直
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩個(gè)全等的△ABC和△DEF重疊在一起,固定△ABC,將△DEF進(jìn)行如下變換:
(1)如圖1,△DEF沿直線CB向右平移(即點(diǎn)F在線段CB上移動(dòng)),連接AF、AD、BD,請直接寫出S△ABC與S四邊形AFBD的關(guān)系
(2)如圖2,當(dāng)點(diǎn)F平移到線段BC的中點(diǎn)時(shí),若四邊形AFBD為正方形,那么△ABC應(yīng)滿足什么條件:請給出證明;
(3)在(2)的條件下,將△DEF沿DF折疊,點(diǎn)E落在FA的延長線上的點(diǎn)G處,連接CG,請你畫出圖形,此時(shí)CG與CF有何數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC為等邊三角形,D是△ABC內(nèi)一點(diǎn),若將△ABD經(jīng)過一次逆時(shí)針旋轉(zhuǎn)后到△ACP的位置,則旋轉(zhuǎn)中心是 ,旋轉(zhuǎn)角等于 °,△ADP是 三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個(gè)3×2的矩形(即長為3,寬為2)可以用兩種不同的方式分割成3或6個(gè)邊長是正整數(shù)的小正方形,即:小正方形的個(gè)數(shù)最多是6個(gè),最少是3個(gè).
(1)一個(gè)5×2的矩形用不同的方式分割后,小正方形的個(gè)數(shù)最多是 個(gè),最少是 個(gè);
(2)一個(gè)7×2的矩形用不同的方式分割后,小正方形的個(gè)數(shù)最多是 個(gè),最少是 個(gè);
(3)一個(gè)(2n+1)×2的矩形用不同的方式分割后,小正方形的個(gè)數(shù)最多是 個(gè),最少是 個(gè).(n是正整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】天義地區(qū)某天的最高氣溫是8°C,最低氣溫是-2°C,則該地這一天的溫差是( ).
A.10°C B.-6°C C.6°C D.-10°C
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=﹣2x的圖象與反比例函數(shù)y=的圖象交于點(diǎn)A(﹣1,n).
(1)求反比例函數(shù)y=的解析式;
(2)若P是x軸上一點(diǎn),且△AOP是等腰三角形,求點(diǎn)P的坐標(biāo);
(3)結(jié)合圖象直接寫出不等式+2x>0的解集為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com