【題目】如圖,已知⊙O是△ABC的外接圓,AD是⊙O的直徑,且BD=BC,延長ADE,BE是⊙O的切線,B是切點.

(1)求證:∠EBD=∠CAB;

(2)BC=,AC=5,求sin∠CBA.

【答案】(1)見解析(2)

【解析】1)先根據(jù)等弦所對的劣弧相等,再由切線的性質(zhì)和圓周角定理即可得出結(jié)論;

2)利用三角形的中位線先求出OF再用勾股定理求出半徑R.在RtODF,求出sinODF的值,即可得出結(jié)論

如圖1連接OB

BD=BC,∴∠CAB=BAD

BE是⊙O的切線,∴∠EBD+∠OBD=90°.

AD是⊙O的直徑,∴∠ABD=90°,OA=BO,∴∠BAD=ABO,∴∠EBD=BAD

BD=BC,∴∠CAB=∠DAB,∴∠EBD=CAB

2)如圖2,設(shè)圓的半徑為R,連接CD

AD為⊙O的直徑,∴∠ACD=90°.

BC=BD,OBCDOBAC

OA=OD,OF=AC=2.5,∴BF=R2.5FD2=OD2-OF2= R2-2.52

RtBFD中,∵BF2+FD2=BD2,∴,2R2-5R-3=0,

∴(2R+1)(R-3)=0

R0,R=3

RtODF,sinODF===

∵∠CBA=∠CDA,∴sinCBA=sinCDA= sinODF=

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】解下列方程

(1)2x2-4x-10=0 (用配方法)

(2)2x2+3x=4(公式法)

(3)(x-2)2=2(x-2)

(4)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形網(wǎng)格中的每個小正方形邊長都是1,每個小格的頂點叫做格點,以格點為頂點分別按下列要求畫三角形.

(1)在圖1中,畫一個三角形,使它的三邊長都是有理數(shù);

(2)在圖2中,畫一個三角形,使它的三邊長分別為3,2;

(3)在圖3中,畫一個三角形,使它的三邊都是無理數(shù),并且構(gòu)成的三角形是直角三角形。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠AOC是直角,OD平分∠AOC,∠BOC60° 求:

1)∠AOD的度數(shù);

2)∠AOB的度數(shù);

3)∠DOB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了促進學生多樣化發(fā)展,某校組織開展了社團活動,分別設(shè)置了體育類、藝術(shù)類、文學類及其它類社團(要求人人參與社團,每人只能選擇一項).為了解學生喜愛哪種社團活動,學校做了一次抽樣調(diào)查.根據(jù)收集到的數(shù)據(jù),繪制成如下兩幅不完整的統(tǒng)計圖,請根據(jù)圖中提供的信息,完成下列問題:

(1)此次共調(diào)查了多少人?

(2)求文學社團在扇形統(tǒng)計圖中所占圓心角的度數(shù);

(3)請將條形統(tǒng)計圖補充完整;

(4)若該校有1500名學生,請估計喜歡體育類社團的學生有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABDCBD關(guān)于直線BD對稱,點EBC上一點,線段CE的垂直平分線交BD于點F,連接AFEF

1求證:AFEF;

2如圖2,連接AEBD于點G.若EFCD,求證:

3如圖3,若∠BAD90°,且點EBF的垂直平分線上,tanABD,DF,請直接寫出AF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線yax2cx2c2)(a0)交x軸于A、B兩點(點A在點B的左側(cè)),交y軸于點C

1A(-1,0,則點B的坐標為___________;

2A(-10),a1,點P為第一象限的拋物線,以P為圓心,為半徑的圓恰好與AC相切,求P點坐標;

3如圖,點R0,ny軸負半軸上,直線RB交拋物線于另一點D,直線RA交拋物線于E.若DRDB,EFy軸于F,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某地區(qū)教育部門為了解初中數(shù)學課堂中學生參與情況,并按“主動質(zhì)疑、獨立思考、專注聽講、講解題目”四個項目進行評價.檢測小組隨機抽查部分學校若干名學生,并將抽查學生的課堂參與情況繪制成如圖所示的扇形統(tǒng)計圖和條形統(tǒng)計圖(均不完整).請根據(jù)統(tǒng)計圖中的信息解答下列問題:

(1)本次抽查的樣本容量是 ;

(2)在扇形統(tǒng)計圖中,“主動質(zhì)疑”對應(yīng)的圓心角為 度;

(3)將條形統(tǒng)計圖補充完整;

(4)如果該地區(qū)初中學生共有60000名,那么在課堂中能獨立思考的學生約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖①,已知△ABC為直角三角形,∠A90°,若沿圖中虛線剪去∠A,則∠1+∠2等于(  )

A90° B135° C270° D315°

(2)如圖②,已知△ABC中,∠A40°,剪去∠A后成四邊形,則∠1+∠2=________°;

(3)根據(jù)(1)與(2)的求解過程,請你歸納猜想∠1+∠2與∠A的關(guān)系是______________.

查看答案和解析>>

同步練習冊答案