【題目】如圖,已知AB為⊙O的直徑,AD,BD是⊙O的弦,BC是⊙O的切線,切點(diǎn)為B,OC∥AD,BA,CD的延長(zhǎng)線相交于點(diǎn)E.
(1)求證:DC是⊙O的切線;
(2)若⊙O半徑為4,∠OCE=30°,求△OCE的面積.
【答案】(1)詳見解析;(2)16.
【解析】
(1)首先連接OD,易證得△COD≌△COB(SAS),然后由全等三角形的對(duì)應(yīng)角相等,求得∠CDO=90°,即可證得直線CD是⊙O的切線;
(2)設(shè)⊙O的半徑為R,則OE=R+1,在Rt△ODE中,利用勾股定理列出方程,求解即可.
(1)證明:連接DO,如圖,
∵AD∥OC,
∴∠DAO=∠COB,∠ADO=∠COD,
又∵OA=OD,
∴∠DAO=∠ADO,
∴∠COD=∠COB.
在△COD和△COB中
,
∴△COD≌△COB(SAS),
∴∠CDO=∠CBO.
∵BC是⊙O的切線,
∴∠CBO=90°,
∴∠CDO=90°,
∴OD⊥CE,
又∵點(diǎn)D在⊙O上,
∴CD是⊙O的切線;
(2)解:由(1)可知∠OCB=∠OCD=30°,
∴∠DCB=60°,
又BC⊥BE,
∴∠E=30°,
在Rt△ODE中,∵tan∠E=,
∴DE==4,
同理DC=OD=4,
∴S△OCE=ODCE=×4×8=16.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校要從數(shù)學(xué)競(jìng)賽初賽成績(jī)相同的四名學(xué)生(其中2名男生,2名女生)中,隨機(jī)選出2名學(xué)生去參加決賽,則選出的2名學(xué)生恰好為1名男生和1名女生的概率為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)的圖象經(jīng)過(guò)點(diǎn),且與正比例函數(shù)的圖象交于點(diǎn),點(diǎn)的橫坐標(biāo)是.
(1)求一次函數(shù)的函數(shù)解析式;
(2)根據(jù)圖象,寫出當(dāng)時(shí),自變量的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知函數(shù)與的圖像在第一象限交于點(diǎn)A(m,y1),點(diǎn)B(m+1,y2)在的圖像上,且點(diǎn)B在以O 點(diǎn)為圓心,OA為半徑的⊙O上,則k的值為( ).
A. B. 1 C. D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的大致圖象如圖所示,頂點(diǎn)坐標(biāo)為(﹣2,﹣9a),下列結(jié)論:①4a+2b+c>0;②5a﹣b+c=0;③若方程a(x+5)(x﹣1)=﹣1有兩個(gè)根x1和x2,且x1<x2,則﹣5<x1<x2<1;④若方程|ax2+bx+c|=1有四個(gè)根,則這四個(gè)根的和為﹣4.其中正確的結(jié)論有( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題提出:某物業(yè)公司接收管理某小區(qū)后,準(zhǔn)備進(jìn)行綠化建設(shè),現(xiàn)要將一塊四邊形的空地(如圖5,四邊形ABCD)鋪上草皮,但由于年代久遠(yuǎn),小區(qū)規(guī)劃書上該空地的面積數(shù)據(jù)看不清了,僅僅留下兩條對(duì)角線AC,BD的長(zhǎng)度分別為20cm,30cm及夾角∠AOB為60°,你能利用這些數(shù)據(jù),幫助物業(yè)人員求出這塊空地的面積嗎?
問(wèn)題顯然,要求四邊形ABCD的面積,只要求出△ABD與△BCD(也可以是△ABC與△ACD)的面積,再相加就可以了.
建立模型:我們先來(lái)解決較簡(jiǎn)單的三角形的情況:
如圖1,△ABC中,O為BC上任意一點(diǎn)(不與B,C兩點(diǎn)重合),連接OA,OA=a,BC=b,∠AOB=α(α為OA與BC所夾較小的角),試用a,b,α表示△ABC的面積.
解:如圖2,作AM⊥BC于點(diǎn)M,
∴△AOM為直角三角形.
又∵∠AOB=α,∴sinα=即AM=OAsinα
∴△ABC的面積=BCAM=BCOAsinα=absinα.
問(wèn)題解決:請(qǐng)你利用上面的方法,解決物業(yè)公司的問(wèn)題.
如圖3,四邊形ABCD中,O為對(duì)角線AC,BD的交點(diǎn),已知AC=20m,BD=30m,∠AOB=60°,求四邊形ABCD的面積.(寫出輔助線作法和必要的解答過(guò)程)
新建模型:若四邊形ABCD中,O為對(duì)角線AC,BD的交點(diǎn),已知AC=a,BD=b,∠AOB=α(α為OA與BC所夾較小的角),直接寫出四邊形ABCD的面積= .
模型應(yīng)用:如圖4,四邊形ABCD中,AB+CD=BC,∠ABC=∠BCD=60°,已知AC=a,則四邊形ABCD的面積為多少?(“新建模型”中的結(jié)論可直接利用)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,P是正三角形ABC內(nèi)的一點(diǎn),且PA=6,PB=8,PC=10,若將△PAC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)后得到△P′AB.
(1)求點(diǎn)P與點(diǎn)P′之間的距離;
(2)求∠APB的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系內(nèi),小正方形網(wǎng)格的邊長(zhǎng)為1個(gè)單位長(zhǎng)度,△ABC 的三個(gè)頂點(diǎn)的坐標(biāo)分別 A(-3,4)B(-5,2)C(-2,1)
(1)畫出 △ABC關(guān)于y 軸的對(duì)稱圖形 △A1B1C1;
(2)畫出將△ABC 繞原點(diǎn) O逆時(shí)針?lè)较蛐D(zhuǎn)90°得到的△A2B2C2 ;
(3)求(2)中線段 OA掃過(guò)的圖形面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某石化乙烯廠某車間生產(chǎn)甲、乙兩種塑料的相關(guān)信息如下表,請(qǐng)你解答下列問(wèn)題:
出廠價(jià) | 成本價(jià) | 排污處理費(fèi) | |
甲種塑料 | 2100(元/噸) | 800(元/噸) | 200(元/噸) |
乙種塑料 | 2400(元/噸) | 1100(元/噸) | 100(元/噸) 另每月還需支付設(shè)備管理、維護(hù)費(fèi)20000元 |
(1)設(shè)該車間每月生產(chǎn)甲、乙兩種塑料各x噸,利潤(rùn)分別為y1元和y2元,分別求出y1和y2與x的函數(shù)關(guān)系式(注:利潤(rùn)=總收入-總支出);
(2)已知該車間每月生產(chǎn)甲、乙兩種塑料均不超過(guò)400噸,若某月要生產(chǎn)甲、乙兩種塑料共700噸,求該月生產(chǎn)甲、乙塑料各多少噸時(shí),獲得的總利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com