【題目】如圖,在ABC中,DEFGBC,且ADDFFB123,則SADES四邊形DFGES四邊形FBCG等于(  )

A.1936B.149C.1827D.1836

【答案】C

【解析】

由于DEFGBC,那么ADE∽△AFG∽△ABC,根據(jù)ADDFFB123,可求出三個(gè)相似三角形的面積比.進(jìn)而可求出ADE、四邊形DFGE、四邊形FBCG的面積比.

解:∵DEFGBC,

∴△ADE∽△AFG∽△ABC,

ADDFFB123,

ADAFAB136

SADESAFGSABC1936,

設(shè)ADE的面積是a,則AFGABC的面積分別是9a,36a,

S四邊形DFGES四邊形FBCG分別是8a,27a

SADES四邊形DFGES四邊形FBCG等=1827

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)yax2+bx+ca≠0)中的xy的部分對(duì)應(yīng)值如下表:

x

3

2

1

0

1

2

3

4

y

12

5

0

3

4

3

0

5

給出以下結(jié)論:(1)二次函數(shù)yax2+bx+c有最小值,最小值為﹣3;(2)當(dāng)﹣x2時(shí),y0;(3)已知點(diǎn)Ax1,y1)、Bx2,y2)在函數(shù)的圖象上,則當(dāng)﹣1x10,3x24時(shí),y1y2.上述結(jié)論中正確的結(jié)論個(gè)數(shù)為( 。

A.0B.1C.2D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD在第一象限內(nèi),邊BCx軸平行,A,B兩點(diǎn)的縱坐標(biāo)分別為42,反比例函數(shù)yx0)的圖象經(jīng)過(guò)A,B兩點(diǎn),若菱形ABCD的面積為2,則k的值為(  )

A. 2B. 3C. 4D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,AB=1,BC=,對(duì)角線AC,BD交于O點(diǎn),將直線AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn),分別交于BC,AD于點(diǎn)E,F(xiàn).

(1)證明:當(dāng)旋轉(zhuǎn)角為   時(shí),四邊形ABEF是平行四邊形;

(2)在旋轉(zhuǎn)過(guò)程中,四邊形BEDF可能是菱形嗎?如果不可能,請(qǐng)說(shuō)明理由;如果可能,說(shuō)明理由并求出此時(shí)AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,BD平分∠ABC,

1)按如下步驟作圖:(保留作圖痕跡)

第一步,分別以點(diǎn)B、D為圓心,以大于BD的長(zhǎng)為半徑在BD兩側(cè)作弧,交于兩點(diǎn)MN;

第二步,連接MN分別交AB,BC于點(diǎn)E、F;

第三步,連接DE,DF

2)求證:四邊形BEDF是菱形;

3)若AD6,BF4,CD3,求AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線軸交于點(diǎn),對(duì)稱軸為,則下列結(jié)論中正確的是(

A.

B. 當(dāng)時(shí),的增大而增大

C.

D. 是一元二次方程的一個(gè)根

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校要圍一個(gè)矩形花圃,花圃的一邊利用足夠長(zhǎng)的墻,另三邊用總長(zhǎng)為米的籬笆恰好圍成(如圖所示).設(shè)矩形的一邊的長(zhǎng)為米(要求),矩形的面積為平方米.

1)求之間的函數(shù)關(guān)系式,并直接寫出自變量的取值范圍;

2)要想使花圃的面積最大,邊的長(zhǎng)應(yīng)為多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,斜邊中點(diǎn),,,邊上,,若相似,則___.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AC是⊙O的直徑,點(diǎn)B,D在⊙O上,點(diǎn)E在⊙O外,∠EAB=D=30°.

(1)C的度數(shù)為   

(2)求證:AE是⊙O的切線;

(3)當(dāng)AB=3時(shí),求圖中陰影部分的面積(結(jié)果保留根號(hào)和π).

查看答案和解析>>

同步練習(xí)冊(cè)答案