【題目】若函數(shù)y=(m﹣1)x|m|是正比例函數(shù),則該函數(shù)的圖象經(jīng)過第 象限.
【答案】二、四
【解析】
試題分析:形如y=kx(k是常數(shù),k≠0)的函數(shù)叫做正比例函數(shù);正比例函數(shù)y=kx(k是常數(shù),k≠0),當(dāng)k>0時(shí),直線y=kx依次經(jīng)過第三、一象限,從左向右上升,y隨x的增大而增大;當(dāng)k<0時(shí),直線y=kx依次經(jīng)過第二、四象限,從左向右下降,y隨x的增大而減小.根據(jù)正比例函數(shù)定義可得:|m|=1,且m﹣1≠0,計(jì)算出m的值,然后可得解析式,再根據(jù)正比例函數(shù)的性質(zhì)可得答案. 由題意得:|m|=1,且m﹣1≠0, 解得:m=﹣1, 函數(shù)解析式為y=﹣2x,
∵k=﹣2<0, ∴該函數(shù)的圖象經(jīng)過第二、四象限
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某牛奶加工廠現(xiàn)有鮮奶9噸,若在市場上直接銷售鮮奶,每噸可獲取利潤500元;制成酸奶銷售,每噸可獲取利潤1200元;制成奶片銷售,每噸可獲取利潤 2000元。
該加工廠的生產(chǎn)能力是:如制成酸奶,每天可加工3噸;制成奶片,每天可加工1噸。受人員限制,兩種加工方式不可同時(shí)進(jìn)行。受氣溫條件限制,這批牛奶必須在4天內(nèi)全部銷售或加工完畢。為此,該廠設(shè)計(jì)了兩種可行方案:
方案一:盡可能多地制成奶片,其余直接銷售鮮奶;
方案二:將一部分制成奶片,其余制成酸奶銷售,并恰好4天完成。
你認(rèn)為哪種方案獲利最多?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D、E分別是AB、AC的中點(diǎn),過點(diǎn)E作EF∥AB,交BC于點(diǎn)F.
(1)求證:四邊形DBFE是平行四邊形;
(2)當(dāng)△ABC滿足什么條件時(shí),四邊形DBFE是菱形?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為a的等邊△ACB中,E是對稱軸AD上一個(gè)動(dòng)點(diǎn),連EC,將線段EC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)60°得到MC,連DM,則在點(diǎn)E運(yùn)動(dòng)過程中,DM的最小值是_____。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分10分)如圖,在平行四邊形ABCD中,點(diǎn)A、B、C的坐標(biāo)分別是(1,0)、(3,1)、(3,3),雙曲線y=(k≠0,x>0)過點(diǎn)D.
(1)求此雙曲線的解析式;
(2)作直線AC交y軸于點(diǎn)E,連結(jié)DE,求△ CDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,∠A∶∠B∶∠C=1∶2∶3,則∠B=___________,若三角形的最長邊為10cm,則最短邊長為_________cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠ABD和∠BDC的平分線交于E,BE交CD于點(diǎn)F,∠1+∠2=90°.
(1)試說明:AB∥CD;
(2)若∠2=25°,求∠BFC的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com