【題目】如圖,在ABCADE中,∠BAD=CAE,ABC=ADE

(1)求證:ABC∽△ADE;

(2)判斷ABDACE是否相似?并證明.

【答案】(1)見解析 (2)ABD∽△ACE

【解析】

(1)由∠BAD=∠CAE易得∠BAC=∠DAE,這樣結(jié)合∠ABC=∠ADE,即可得到△ABC∽△ADE.

(2)由(1)中結(jié)論易得,從而可得 這樣結(jié)合∠BAD=CAE即可得到

ABD∽△ACE了.

詳解;

1)∵∠BAD=CAE,

∴∠BAC=DAE,

∵∠ABC=ADE,

∴△ABC∽△ADE.

(2)△ABD∽△ACE,理由如下

由(1)可知ABC∽△ADE,

,

,

又∵∠BAD=CAE,

∴△ABD∽△ACE.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,CE是⊙O的直徑,BD切⊙O于點D,DE∥BO,CE的延長線交BD于點A.

(1)求證:直線BC是⊙O的切線;
(2)若AE=2,tan∠DEO= ,求AO的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:已知直線 AB、CD 相交于點 O,COE=90°

1)若∠AOC=36°,求∠BOE 的度數(shù);

2)若∠BODBOC=15,求∠AOE 的度數(shù).

[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/13/1923292236627968/1924724835590144/STEM/dc8ee683cff64dfdb92368e07f9f9b9d.png]

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】希望學校修建了一棟4層的教學大樓,每層樓有6間教室,進出這棟大樓共有3道門(兩道大小相同的正門和一道側(cè)門).安全檢查中,對這3道門進行了測試:當同時開啟一道正門和一道側(cè)門時,2分鐘內(nèi)可以通過400名學生,若一道正門平均每分鐘比一道側(cè)門可多通過40名學生.

(1)求平均每分鐘一道正門和一道側(cè)門各可以通過多少名學生?

(2)檢查中發(fā)現(xiàn),緊急情況時因?qū)W生擁擠,出門的效率降低20%.安全檢查規(guī)定:在緊急情況下全大樓的學生應在5分鐘內(nèi)通過這3道門安全撤離.假設這棟教學大樓每間教室最多有45名學生,問:建造的這3道門是否符合安全規(guī)定?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】按如下方法,將ABC的三邊縮小的原來的,如圖,任取一點O,連AO、BO、CO,并取它們的中點D、E、F,得DEF,則下列說法正確的是( 。

A. ABCDEF不是位似圖形 B. =

C. ABCDEF的周長比為1:2 D. ABCDEF的面積比為4:1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一個三角形的第一條邊長為2a+5b,第二條邊比第一條邊長3a﹣2b,第三條邊比第二條邊短3a.

1則第二邊的邊長為 ,第三邊的邊長為 ;

2用含ab的式子表示這個三角形的周長,并化簡;

3)若ab滿足|a﹣5|+b﹣32=0,求出這個三角形的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】合作探究:你了解嗎?駱駝被稱為“沙漠之舟”,它的體溫隨時間的變化而發(fā)生較大的變化,觀察圖象回答下列問題:
(1)一天中,駱駝的體溫的變化范圍是 , 它的體溫從最低上升到最高需要時.
(2)從16時到24時,駱駝的體溫下降了度.
(3)從時到時,駱駝的體溫在上升,從時到時,從 時到時駱駝的體溫在下降.
(4)你能看出第二天8時駱駝的體溫與第一天8時的體溫的關(guān)系是
(5)A點表示的是 , 還有時的溫度與A點所表示的溫度相同?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用適當?shù)姆椒ń庀铝蟹匠探M:

(1)

(2)

(3)

(4)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】張明同學設計了某個產(chǎn)品的正方體包裝盒如圖所示,由于粗心少設計了其中一個頂蓋,請你把它補上,使其成為一個兩面均有蓋的正方體盒子.

(1)共有   種彌補方法;

(2)任意畫出一種成功的設計圖(在圖中補充);

(3)在你幫忙設計成功的圖中,要把﹣8,10,﹣12,8,﹣10,12這些數(shù)字分別填入六個小正方形,使得折成的正方體相對面上的兩個數(shù)相加得0.(直接在圖中填上)

查看答案和解析>>

同步練習冊答案