【題目】如圖已知,為內(nèi)一定點(diǎn),上有一點(diǎn),上有一點(diǎn),當(dāng)的周長取最小值時(shí),的度數(shù)是( )
A. B. C. D.
【答案】B
【解析】
設(shè)點(diǎn)P關(guān)于OM、ON對(duì)稱點(diǎn)分別為P′、P″,當(dāng)點(diǎn)A、B在P′P″上時(shí),△PAB周長為PA+AB+BP=P′P″,此時(shí)周長最。鶕(jù)軸對(duì)稱的性質(zhì),可求出∠APB的度數(shù).
分別作點(diǎn)P關(guān)于OM、ON的對(duì)稱點(diǎn)P′、P″,連接OP′、OP″、P′P″,P′P″交OM、ON于點(diǎn)A. B,
連接PA、PB,此時(shí)△PAB周長的最小值等于P′P″.
由軸對(duì)稱性質(zhì)可得,OP′=OP″=OP,∠P′OA=∠POA,∠P″OB=∠POB,
∴∠P′OP″=2∠MON=2×40°=80°,
∴∠OP′P″=∠OP'P′=(180°80°)÷2=50°
又∵∠BPO=∠OP″B=50°,∠APO=∠AP′O=50°,
∴∠APB=∠APO+∠BPO=100°.
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,直線MN與AB、CD分別交于點(diǎn)E、F,FG平分∠EFD,EG⊥FG于點(diǎn)G,若∠CFN=110°,則∠BEG=( 。
A. 20°B. 25°C. 35°D. 40°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ΔABC中,AB=AC,∠A=36°,BE平分∠ABC,DE//BC,則圖中等腰三角形共有( )個(gè)
A. 3B. 4C. 5D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD的對(duì)角線AC、BD交于點(diǎn)O,DE平分∠ADC交AB于點(diǎn)E,∠BCD=60°,AD=AB,連接OE.下列結(jié)論:①SABCD=ADBD;②DB平分∠CDE;③AO=DE;④S△ADE=5S△OFE,其中正確的個(gè)數(shù)有( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,D是BC邊上一點(diǎn),E是AD的中點(diǎn),過點(diǎn)A作BC的平行線交BE的延長線于F,且AF=CD,連接CF.
(1)求證:△AEF≌△DEB;
(2)若AB=AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國古代對(duì)于利用方程解決實(shí)際問題早有研究,《九章算術(shù)》中提到這么一道“以繩測(cè)井”的題:以繩測(cè)井,若將繩三折測(cè)之,繩多四尺:若將繩四折測(cè)之,繩多一尺.繩長、井深各幾何?
這道題大致意思是:用繩子測(cè)量水井深度,如果將繩子折成三等份,那么每等份井外余繩四尺:如果將繩子折成四等份,那么每等份井外余繩一尺.問繩長和井深各多少尺?若設(shè)井深為x尺,則求解井深的方程正確的是( 。
A.3(x+4)=4(x+1)B.3x+4=4x+1
C.x+4=x+1D.x﹣4=x﹣1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的一元二次方程ax2+bx﹣1=0(a≠0)有一根為x=2019,則一元二次方程a(x﹣1)2+b(x﹣1)=1必有一根為( 。
A.B.2020C.2019D.2018
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于有理數(shù),定義一種新運(yùn)算“”,規(guī)定.
(1)計(jì)算的值.
(2)當(dāng)在數(shù)軸上的位置如圖所示時(shí),化簡.
(3)當(dāng)時(shí),是否一定有或者?若是,則說明理由;若不是,則舉例說明.
(4)已知,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com