【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象相交于A(2,3),B(﹣3,n)兩點.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)根據(jù)所給條件,請直接寫出不等式kx+b>的解集;
(3)過點A作直線l,若直線l與兩坐標軸圍成的三角形面積為8,請直接寫出滿足條件的直線l的條數(shù).
【答案】(1)y=,y=x+1;(2)x>2或﹣3<x<0;(3)滿足條件的直線l有兩條.
【解析】
(1)根據(jù)一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象相交于A(2,3),B(﹣3,n)兩點,可以求得一次函數(shù)與反比例函數(shù)的解析式;
(2)根據(jù)題目中的條件和函數(shù)圖象可以直接寫出不等式kx+b>的解集;
(3)根據(jù)題意可以求出滿足條件的直線l,本題得以解決.
(1)∵反比例函數(shù)y=的圖象過點A(2,3),B(﹣3,n),
∴3=,得m=6,
∴反比例函數(shù)的解析式為y=,
∴n==﹣2,
即點B的坐標為(﹣3,﹣2),
∵一次函數(shù)y=kx+b過點A(2,3),B(﹣3,﹣2),
∴,得,
即一次函數(shù)的解析式為y=x+1;
(2)∵一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象相交于A(2,3),B(﹣3,n)兩點,
∴不等式kx+b>的解集是x>2或﹣3<x<0;
(3)滿足條件的直線l有兩條,
理由:設直線l的解析式為y=mx+n,
當x=0時,y=n,當y=0時,x=,
即直線l與x軸的交點為(,0),與y軸的交點為(0,n),
∵點A(2,3)在直線l上,
∴2m+n=3,得n=3﹣2m,
∵直線l與兩坐標軸圍成的三角形面積為8,
∴當m>0時,,
解得,m=±,
當m<0時,,此時無解,
故滿足條件的直線l有兩條.
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=AC,BC=2,將△ABC繞點C順針方向旋轉(zhuǎn)α(0°<α<360°),得到△DEC,使點E在AB邊上。
(1)如圖1,連接AD,
①求證:四邊形ABCD是平行四邊形;
② 當AE=AD時,求旋轉(zhuǎn)角α的度數(shù);
(2)如圖2,若AE=2BE,求AB的長。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,2AB>BC,點E和點F為邊AD上兩點,將矩形沿著BE和CF折疊,點A和點D恰好重合于矩形內(nèi)部的點G處,
(1)當AB=BC時,求∠GEF的度數(shù);
(2)若AB=,BC=2,求EF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校“兩會”知識競賽培訓活動中,在相同條件下對甲、乙兩名學生進行了10次測驗.
①收集數(shù)據(jù):分別記錄甲、乙兩名學生10次測驗成績(單位:分)
次數(shù) 成績 學生 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
甲 | 74 | 84 | 89 | 83 | 86 | 81 | 86 | 84 | 86 | 86 |
乙 | 82 | 73 | 81 | 76 | 81 | 87 | 81 | 90 | 92 | 96 |
②整理數(shù)據(jù):兩組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)、方差如下表所示:
統(tǒng)計量 學生 | 平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 |
甲 | 83.9 | ______ | 86 | 15.05 |
乙 | 83.9 | 81.5 | ______ | 46.92 |
③分析數(shù)據(jù):根據(jù)甲、乙兩名學生10次測驗成績繪制折線統(tǒng)計圖:
④得出結(jié)論:結(jié)合上述統(tǒng)計全過程,回答下列問題:
(1)補全②中的表格.
(2)判斷甲、乙兩名學生中, (填甲或乙)的成績比較穩(wěn)定,說明判斷依據(jù): .
(3)如果你是決策者,從甲、乙兩名學生中選擇一人代表學校參加知識競賽,你會選擇______(填“甲”或“乙),理由是:____ __.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=2,點E在邊AD上,∠ABE=45°,BE=DE,連接BD,點P在線段DE上,過點P作PQ∥BD交BE于點Q,連接QD.設PD=x,△PQD的面積為y,則能表示y與x函數(shù)關系的圖象大致是( )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(-1,0),對稱軸為直線 x=2,系列結(jié)論:(1)4a+b=0;(2)4a+c>2b;(3)5a+3c>0;(4)方程a(x﹣1)2 + b(x﹣1)+c=0的兩根是x1= 0,x2= 6.其中正確的結(jié)論有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在矩形ABCD中,點E在CD上,∠AEB=90°,點P從點A出發(fā),沿A→E→B的路徑勻速運動到點B停止,作PQ⊥CD于點Q,設點P運動的路程為x,PQ長為y,若y與x之間的函數(shù)關系圖象如圖2所示,當x=6時,PQ的值是( )
A. 2B. C. D. 1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】平面直角坐標系中,直線,點,點,動點在直線上,動點、在軸正半軸上,連接、、.
(1)若點,求直線的解析式;
(2)如圖,當周長最小時,連接,求的最小值,并求出此時點的坐標;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小強想知道湖中兩個小亭A、B之間的距離,他在與小亭A、B位于同一水平面且東西走向的湖邊小道I上某一觀測點M處,測得亭A在點M的北偏東30°,亭B在點M的北偏東60°,當小明由點M沿小道I向東走60米時,到達點N處,此時測得亭A恰好位于點N的正北方向,繼續(xù)向東走30米時到達點Q處,此時亭B恰好位于點Q的正北方向,根據(jù)以上測量數(shù)據(jù),請你幫助小強計算湖中兩個小亭A、B之間的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com