【題目】已知:關(guān)于x的一次函數(shù)y=(2m-1)x+m -2,若它的函數(shù)值y隨x的增大而增大,且圖象與y軸負(fù)半軸相交,且m為正整數(shù).
(1)求這個(gè)函數(shù)的解析式.
(2)求直線y=-x和(1)中函數(shù)的圖象與x軸圍成的三角形面積.
【答案】(1)y=x1(2)
【解析】
(1)根據(jù)函數(shù)圖象與負(fù)半軸相交可得出m2<0,再根據(jù)圖象不經(jīng)過(guò)第二象限可得出2m1>0,從而結(jié)合m為正整數(shù)可得出m的值.
(2)做出函數(shù)y=x1與y=-x的圖象,即可進(jìn)行求解.
(1)由題意得:,
解得:<m<2,
又∵m為正整數(shù),
∴m=1,函數(shù)解析式為:y=x1.
(2)如圖,做出函數(shù)y=x1與y=-x的圖象
令y=x1=0,解得x=1,
∴A(1,0)
聯(lián)立,解得
∴函數(shù)y=x1與y=-x交點(diǎn)為(,),
∴所圍三角形的面積為:×1×=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是正方形,△ABE是等邊三角形,M為對(duì)角線BD(不含B點(diǎn))上任意一點(diǎn),將BM繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到BN,連接EN、AM、CM.設(shè)點(diǎn)N的坐標(biāo)為(m,n).
(1)若建立平面直角坐標(biāo)系,滿足原點(diǎn)在線段BD上,點(diǎn)B(﹣1,0),A(0,1).且BM=t(0<t≤2),則點(diǎn)D的坐標(biāo)為 ,點(diǎn)C的坐標(biāo)為 ;請(qǐng)直接寫(xiě)出點(diǎn)N縱坐標(biāo)n的取值范圍是 ;
(2)若正方形的邊長(zhǎng)為2,求EC的長(zhǎng),以及AM+BM+CM的最小值.(提示:連結(jié)MN,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形BCDE的各邊分別平行于x軸與y軸,物體甲和物體乙由點(diǎn)A(2,0)同時(shí)出發(fā),沿矩形BCDE的邊作環(huán)繞運(yùn)動(dòng),物體甲按逆時(shí)針?lè)较蛞?/span>1個(gè)單位/秒勻速運(yùn)動(dòng),物體乙按順時(shí)針?lè)较蛞?/span>2個(gè)單位/秒勻速運(yùn)動(dòng),則兩個(gè)物體運(yùn)動(dòng)后的第2018次相遇地點(diǎn)的坐標(biāo)是( 。
A. (1,﹣1) B. (2,0) C. (﹣1,1) D. (﹣1,﹣1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,把正方形鐵片OABC置于平面直角坐標(biāo)系中,頂點(diǎn)A的坐標(biāo)為(3,0),點(diǎn)P(1,2)在正方形鐵片上,將正方形鐵片繞其右下角的頂點(diǎn)按順時(shí)針?lè)较蛞来涡D(zhuǎn)90°,第一次旋轉(zhuǎn)至圖①位置,第二次旋轉(zhuǎn)至圖②位置……,則正方形鐵片連續(xù)旋轉(zhuǎn)2020次后,點(diǎn)P的坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知點(diǎn)B(0,9),點(diǎn)C為x軸上一動(dòng)點(diǎn),連接BC,△ODC和△EBC都是等邊三角形.
(1)求證:DE=BO;
(2)如圖2,當(dāng)點(diǎn)D恰好落在BC上時(shí).
①求點(diǎn)E的坐標(biāo);
②在x軸上是否存在點(diǎn)P,使△PEC為等腰三角形?若存在,寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由;
③如圖3,點(diǎn)M是線段BC上的動(dòng)點(diǎn)(點(diǎn)B,點(diǎn)C除外),過(guò)點(diǎn)M作MG⊥BE于點(diǎn)G,MH⊥CE于點(diǎn)H,當(dāng)點(diǎn)M運(yùn)動(dòng)時(shí),MH+MG的值是否發(fā)生變化?若不會(huì)變化,直接寫(xiě)出MH+MG的值;若會(huì)變化,簡(jiǎn)要說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于點(diǎn)A(﹣3,m+8),B(n,﹣6)兩點(diǎn).
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合與探究:
如圖,在平面直角坐標(biāo)系中,直線與軸交于點(diǎn),與直線交于點(diǎn), 直線與軸交于點(diǎn).
(1)求直線的函數(shù)表達(dá)式;
(2)在線段上找一點(diǎn),使得與的面積相等,求出點(diǎn)的坐標(biāo);
(3)y軸上有一動(dòng)點(diǎn),直線上有一動(dòng)點(diǎn),若是以線段為斜邊的等腰直角三角形,求出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】材料:帕普斯借助函數(shù)給出了一種“三等分銳角”的方法,具體如下:
①建立平面直角坐標(biāo)系,將已知銳角∠AOB的頂點(diǎn)與原點(diǎn)O重合,角的一邊OB與x軸正方向重合;
②在平面直角坐標(biāo)系里,繪制函數(shù)y=的圖象,圖象與已知角的另一邊OA交于點(diǎn)P;
③以P為圓心,2OP為半徑作弧,交函數(shù)y=的圖象于點(diǎn)R;
④分別過(guò)點(diǎn)P和R作x軸和y軸的平行線,兩線相交于點(diǎn)M、Q;
⑤連接OM,得到∠MOB,這時(shí)∠MOB=∠AOB.
根據(jù)以上材料解答下列問(wèn)題:
(1)設(shè)點(diǎn)P的坐標(biāo)為(a,),點(diǎn)R的坐標(biāo)為(b,),則點(diǎn)M的坐標(biāo)為 ;
(2)求證:點(diǎn)Q在直線OM上;
(3)求證:∠MOB=∠AOB;
(4)應(yīng)用上述方法得到的結(jié)論,如何三等分一個(gè)鈍角(用文字簡(jiǎn)要說(shuō)明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在由邊長(zhǎng)為1的小正方形組成的網(wǎng)格圖中有△ABC,建立平面直角坐標(biāo)系后,點(diǎn)O的坐標(biāo)是(0,0).
(1)以O(shè)為位似中心,作△A′B′C′∽△ABC,相似比為1:2,且保證△A′B′C′在第三象限;
(2)點(diǎn)B′的坐標(biāo)為(_______),______);
(3)若線段BC上有一點(diǎn)D,它的坐標(biāo)為(a,b),
那么它的對(duì)應(yīng)點(diǎn)D′的坐標(biāo)為(__________).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com