【題目】下圖為我市某校2015年參加各類(lèi)比賽(包括圍棋、書(shū)法、繪畫(huà)、鋼琴四個(gè)類(lèi)別)的參賽人數(shù)統(tǒng)計(jì)圖:
(1)該校參加比賽的總?cè)藬?shù)是 人,并把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)在扇形統(tǒng)計(jì)圖中,該校參加圍棋所對(duì)應(yīng)的圓心角的度數(shù)是 ;
(3)從全市中小學(xué)參加比賽選手中隨機(jī)抽取60人,其中有20人獲獎(jiǎng).今年我市中小學(xué)參加比賽人數(shù)共有2400人,請(qǐng)你估算今年參加繪畫(huà)比賽的人數(shù)以及參加比賽獲獎(jiǎng)的總?cè)藬?shù)約是多少人?
【答案】(1)24,圖見(jiàn)解析;(2)120°;(3)400人,800人.
【解析】
(1)根據(jù)參加書(shū)法比賽的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖的信息即可得總?cè)藬?shù),由此即可得參加圍棋比賽的人數(shù),再補(bǔ)全條形統(tǒng)計(jì)圖即可;
(2)先求出參加圍棋的人數(shù)占比,再乘以即可得;
(3)先求出參加繪畫(huà)比賽的人數(shù)占比、獲獎(jiǎng)的人數(shù)占比,再分別乘以2400即可得.
(1)該校參加比賽的總?cè)藬?shù)是(人)
參加圍棋比賽的人數(shù)為(人)
補(bǔ)全條形統(tǒng)計(jì)圖如下:
(2)參加圍棋的人數(shù)占比為
則
故答案為:;
(3)參加繪畫(huà)比賽的人數(shù)占比為
獲獎(jiǎng)的人數(shù)占比
則(人)
(人)
答:今年參加繪畫(huà)比賽的人數(shù)約為400人,參加比賽獲獎(jiǎng)的總?cè)藬?shù)約是800人.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)魏晉時(shí)期著名的數(shù)學(xué)家劉徽在《九章算術(shù)》中提出了“割圓術(shù)——割之彌細(xì),所失彌少,隔之又割,以至不可割,則與圓周合體,而無(wú)所失也.”也就是利用圓的內(nèi)接多邊形逐步逼近圓的方法來(lái)近似計(jì)算圓的面積和周長(zhǎng).如圖1,若用圓的內(nèi)接正六邊形的面積來(lái)近似估計(jì)半徑為1的⊙O的面積,再用如圖2的圓的內(nèi)接正十二邊形的面積來(lái)近似估計(jì)半徑為1的⊙O的面積,則____.(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知⊙C過(guò)菱形ABCD的三個(gè)頂點(diǎn)B,A,D,連結(jié)BD,過(guò)點(diǎn)A作AE∥BD交射線CB于點(diǎn)E.
(1)求證:AE是⊙C的切線.
(2)若半徑為2,求圖中線段AE、線段BE和圍成的部分的面積.
(3)在(2)的條件下,在⊙C上取點(diǎn)F,連結(jié)AF,使∠DAF=15°,求點(diǎn)F到直線AD的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】通過(guò)使用手機(jī)app購(gòu)票,智能閘機(jī)、手持驗(yàn)票機(jī)驗(yàn)票的方式,能夠大大縮短游客排隊(duì)購(gòu)票、驗(yàn)票的等待時(shí)間,且操作極其簡(jiǎn)單,已知某公園采用新的售票、驗(yàn)票方式后,平均每分鐘接待游客的人數(shù)是原來(lái)的10倍,且接待5000名游客的入園時(shí)間比原來(lái)接待600名游客的入園時(shí)間還少5分鐘,求該公園原來(lái)平均每分鐘接待游客的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠C=90°,AC=BC,點(diǎn)P在線段BA的延長(zhǎng)線上,作PD⊥AC,交AC的延長(zhǎng)線于點(diǎn)D,點(diǎn)D關(guān)于直線AB的對(duì)稱(chēng)點(diǎn)為E,連接PE并延長(zhǎng)PE到點(diǎn)F,使EF=AC,連接CF.
(1)依題意補(bǔ)全圖1;
(2)求證:AD=CF;
(3)若AC=2,點(diǎn)Q在直線AB上,寫(xiě)出一個(gè)AQ的值,使得對(duì)于任意的點(diǎn)P總有QD=QF,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某水果店經(jīng)銷(xiāo)A、B兩種水果,A種水果進(jìn)貨單價(jià)比B種水果進(jìn)貨單價(jià)多2元,花50元購(gòu)進(jìn)A種水果的數(shù)量與花40元購(gòu)進(jìn)B種水果的數(shù)量相同.在銷(xiāo)售過(guò)程中發(fā)現(xiàn),A種水果每天銷(xiāo)售量是與銷(xiāo)售價(jià)x(元)滿(mǎn)足關(guān)系式,B種水果,每天銷(xiāo)售量與銷(xiāo)售價(jià)x(元)滿(mǎn)足= -x+14
(1)求A、B兩種水果的單價(jià).
(2)已知A種水果比B種水果的銷(xiāo)售價(jià)高2元/千克,且每天A、B水果均有a千克壞掉.設(shè)B水果售價(jià)為t元/千克,每天兩種水果的總利潤(rùn)為W元,求W與t的函數(shù)解析式,并求出當(dāng)a的取值在什么范圍內(nèi),水果店有可能不賠錢(qián)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知蓄電池的電壓為定值,使用蓄電池時(shí),電流I(單位:A)與電阻R(單位:)是反比例函數(shù)關(guān)系.當(dāng)時(shí),.
(1)寫(xiě)出I關(guān)于R的函數(shù)解析式;
(2)完成下表,并在給定的平面直角坐標(biāo)系中畫(huà)出這個(gè)函數(shù)的圖象;
… | … | |||||||||
… | … |
(3)如果以此蓄電池為電源的用電器的限制電流不能超過(guò).那么用電器可變電阻應(yīng)控制在什么范圍內(nèi)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,BC=4,且AB=,連接對(duì)角線AC,點(diǎn)E為AC中點(diǎn),點(diǎn)F為線段AB上的動(dòng)點(diǎn),連接EF,作點(diǎn)C關(guān)于EF的對(duì)稱(chēng)點(diǎn)C',連接C'E,C'F,若△EFC'與△ACF的重疊部分(△EFG)面積等于△ACF的,則BF=________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知拋物線與x軸交于點(diǎn)A(3,0)和點(diǎn)B,與y軸相交于點(diǎn)C(0,3),拋物線的頂點(diǎn)為點(diǎn)D.
(1)求拋物線的表達(dá)式及頂點(diǎn)D的坐標(biāo);
(2)聯(lián)結(jié)AD、AC、CD,求∠DAC的正切值;
(3)如果點(diǎn)P是原拋物線上的一點(diǎn),且∠PAB=∠DAC,將原拋物線向右平移m個(gè)單位(m>0),使平移后新拋物線經(jīng)過(guò)點(diǎn)P,求平移距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com