【題目】已知拋物線y=ax2+bx+c開口向上且經(jīng)過(guò)點(diǎn)(1,1),雙曲線y= 經(jīng)過(guò)點(diǎn)(a,bc),給出下列結(jié)論:①bc>0;②b+c>0;③b,c是關(guān)于x的一元二次方程x2+(a﹣1)x+ =0的兩個(gè)實(shí)數(shù)根;④a﹣b﹣c≥3.其中正確結(jié)論是(填寫序號(hào))

【答案】①③
【解析】解:∵拋物線y=ax2+bx+c開口向上且經(jīng)過(guò)點(diǎn)(1,1),雙曲線y= 經(jīng)過(guò)點(diǎn)(a,bc),

∴bc>0,故①正確;
∴a>1時(shí),則b、c均小于0,此時(shí)b+c<0,
當(dāng)a=1時(shí),b+c=0,則與題意矛盾,
當(dāng)0<a<1時(shí),則b、c均大于0,此時(shí)b+c>0,
故②錯(cuò)誤;
∴x2+(a﹣1)x+ =0可以轉(zhuǎn)化為:x2+(b+c)x+bc=0,得x=b或x=c,故③正確;∵b,c是關(guān)于x的一元二次方程x2+(a﹣1)x+ =0的兩個(gè)實(shí)數(shù)根,
∴a﹣b﹣c=a﹣(b+c)=a+(a﹣1)=2a﹣1,
當(dāng)a>1時(shí),2a﹣1>3,
當(dāng)0<a<1時(shí),﹣1<2a﹣1<3,
故④錯(cuò)誤;
所以答案是:①③.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系的相關(guān)知識(shí)可以得到問題的答案,需要掌握二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時(shí),拋物線開口向上; a<0時(shí),拋物線開口向下b與對(duì)稱軸有關(guān):對(duì)稱軸為x=-b/2a;c表示拋物線與y軸的交點(diǎn)坐標(biāo):(0,c).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,∠BAD的平分線交BC于點(diǎn)E,交DC的延長(zhǎng)線于點(diǎn)F,取EF的中點(diǎn)G,連接CG,BG,BD,DG,下列結(jié)論:
①BE=CD;
②∠DGF=135°;
③∠ABG+∠ADG=180°;
④若=,則3SBDG=13SDGF
其中正確的結(jié)論是 寫所有正確結(jié)論的序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】近期豬肉價(jià)格不斷走高,引起了民眾與政府的高度關(guān)注.當(dāng)市場(chǎng)豬肉的平均價(jià)格每千克達(dá)到一定的單價(jià)時(shí),政府將投入儲(chǔ)備豬肉以平抑豬肉價(jià)格.
(1)從今年年初至5月20日,豬肉價(jià)格不斷走高,5月20日比年初價(jià)格上漲了60%.某市民在今年5月20日購(gòu)買2.5千克豬肉至少要花100元錢,那么今年年初豬肉的最低價(jià)格為每千克多少元?
(2)5月20日,豬肉價(jià)格為每千克40元.5月21日,某市決定投入儲(chǔ)備豬肉并規(guī)定其銷售價(jià)在每千克40元的基礎(chǔ)上下調(diào)a%出售.某超市按規(guī)定價(jià)出售一批儲(chǔ)備豬肉,該超市在非儲(chǔ)備豬肉的價(jià)格仍為每千克40元的情況下,該天的兩種豬肉總銷量比5月20日增加了a%,且儲(chǔ)備豬肉的銷量占總銷量的 ,兩種豬肉銷售的總金額比5月20日提高了 a%,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y=﹣x+b與反比例函數(shù)y= (x>0)的圖象交于A,B兩點(diǎn),與x軸、y軸分別交于C,D兩點(diǎn),連結(jié)OA,OB,過(guò)A作AE⊥x軸于點(diǎn)E,交OB于點(diǎn)F,設(shè)點(diǎn)A的橫坐標(biāo)為m.

(1)b=(用含m的代數(shù)式表示);
(2)若SOAF+S四邊形EFBC=4,則m的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了幫助九年級(jí)學(xué)生做好體育考試項(xiàng)目的選考工作,某校統(tǒng)計(jì)了本縣上屆九年級(jí)畢業(yè)生體育考試各個(gè)項(xiàng)目參加的男、女生人數(shù)及平均成績(jī),并繪制成如圖兩個(gè)統(tǒng)計(jì)圖,請(qǐng)結(jié)合統(tǒng)計(jì)圖信息解決問題.

(1)“擲實(shí)心球”項(xiàng)目男、女生總?cè)藬?shù)是“跳繩”項(xiàng)目男、女生總?cè)藬?shù)的2倍,求“跳繩”項(xiàng)目的女生人數(shù);
(2)若一個(gè)考試項(xiàng)目的男、女生總平均成績(jī)不小于9分為“優(yōu)秀”,試判斷該縣上屆畢業(yè)生的考試項(xiàng)目中達(dá)到“優(yōu)秀”的有哪些項(xiàng)目,并說(shuō)明理由;
(3)請(qǐng)結(jié)合統(tǒng)計(jì)圖信息和實(shí)際情況,給該校九年級(jí)學(xué)生體育考試項(xiàng)目的選擇提出合理化建議.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y= x+2與雙曲線相交于點(diǎn)A(m,3),與x軸交于點(diǎn)C.

(1)求雙曲線解析式;
(2)點(diǎn)P在x軸上,如果△ACP的面積為3,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2017江蘇省無(wú)錫市,第25題,10分)操作:如圖1,P是平面直角坐標(biāo)系中一點(diǎn)(x軸上的點(diǎn)除外),過(guò)點(diǎn)PPCx軸于點(diǎn)C,點(diǎn)C繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)60°得到點(diǎn)Q.”我們將此由點(diǎn)P得到點(diǎn)Q的操作稱為點(diǎn)的T變換.

(1)點(diǎn)Pa,b)經(jīng)過(guò)T變換后得到的點(diǎn)Q的坐標(biāo)為 ;若點(diǎn)M經(jīng)過(guò)T變換后得到點(diǎn)N(6,),則點(diǎn)M的坐標(biāo)為

(2)A是函數(shù)圖象上異于原點(diǎn)O的任意一點(diǎn),經(jīng)過(guò)T變換后得到點(diǎn)B

①求經(jīng)過(guò)點(diǎn)O,點(diǎn)B的直線的函數(shù)表達(dá)式;

②如圖2,直線ABy軸于點(diǎn)D,求OAB的面積與OAD的面積之比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:2sin45°﹣32+(﹣ 0+| ﹣2|+

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A在函數(shù)y= (x>0)的圖象上,且OA=4,過(guò)點(diǎn)A作AB⊥x軸于點(diǎn)B,則△ABO的周長(zhǎng)為

查看答案和解析>>

同步練習(xí)冊(cè)答案