【題目】當(dāng)x=m和x=n(m≠n)時(shí),二次函數(shù)y=x2﹣2x+3的函數(shù)值相等,當(dāng)x=m+n時(shí),函數(shù)y=x2﹣2x+3的值為

【答案】3
【解析】解:∵當(dāng)x=m和x=n(m≠n)時(shí),二次函數(shù)y=x2﹣2x+3=(x﹣1)2+2的函數(shù)值相等,
∴以m、n為橫坐標(biāo)的點(diǎn)關(guān)于直線x=1對(duì)稱,則 =1,
∴m+n=2,
∵x=m+n,
∴x=2,函數(shù)y=4﹣4+3=3.
所以答案是3.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解二次函數(shù)的概念的相關(guān)知識(shí),掌握一般地,自變量x和因變量y之間存在如下關(guān)系:一般式:y=ax2+bx+c(a≠0,a、b、c為常數(shù)),則稱y為x的二次函數(shù),以及對(duì)二次函數(shù)的性質(zhì)的理解,了解增減性:當(dāng)a>0時(shí),對(duì)稱軸左邊,y隨x增大而減;對(duì)稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱軸左邊,y隨x增大而增大;對(duì)稱軸右邊,y隨x增大而減小.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我校初三學(xué)子在不久前結(jié)束的體育中考中取得滿意成績(jī),贏得2016年中考開門紅.現(xiàn)隨機(jī)抽取了部分學(xué)生的成績(jī)作為一個(gè)樣本,按A(滿分)、B(優(yōu)秀)、C(良好)、D(及格)四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果制成如下2幅不完整的統(tǒng)計(jì)圖,如圖,請(qǐng)你結(jié)合圖表所給信息解答下列問題:

(1)將折線統(tǒng)計(jì)圖在圖中補(bǔ)充完整;此次調(diào)查共隨機(jī)抽取了名學(xué)生,其中學(xué)生成績(jī)的中位數(shù)落在等級(jí);
(2)為了今后中考體育取得更好的成績(jī),學(xué)校決定分別從成績(jī)?yōu)闈M分的男生和女生中各選一名參加“經(jīng)驗(yàn)座談會(huì)”,若成績(jī)?yōu)闈M分的學(xué)生中有4名女生,且滿分的男、女生中各有2名體育特長(zhǎng)生,請(qǐng)用列表或畫樹狀圖的方法求出所選的兩名學(xué)生剛好都不是體育特長(zhǎng)生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)A(2,0),B(0,4),作BOC,使BOCABO全等,則點(diǎn)C坐標(biāo)為________________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,O為原點(diǎn),點(diǎn)A(﹣2,0),點(diǎn)B(0,2),點(diǎn)E,點(diǎn)F分別為OA,OB的中點(diǎn).若正方形OEDF繞點(diǎn)O順時(shí)針旋轉(zhuǎn),得正方形OE′D′F′,記旋轉(zhuǎn)角為α.

(1)如圖①,當(dāng)α=90°時(shí),求AE′,BF′的長(zhǎng);
(2)如圖②,當(dāng)α=135°時(shí),求證AE′=BF′,且AE′⊥BF′;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司市場(chǎng)營銷部的營銷員的個(gè)人月收入y()與該營銷員每月的銷售量x(萬件)成一次函數(shù)關(guān)系,其圖象如圖11所示.根據(jù)圖象提供的信息,解答下列問題:

(1)求出營銷員的個(gè)人月收入y()與該營銷員每月的銷售量x(萬件)(x≥0)之間的函數(shù)關(guān)系式;

(2)已知該公司營銷員李平5月份的銷售量為1.2萬件,求李平5月份的收入.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線l過點(diǎn)M(3,0),且平行于y軸.

(1)如果△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別是A(﹣2,0),B(﹣1,0),C(﹣1,2),△ABC關(guān)于y軸的對(duì)稱圖形是△A1B1C1,△A1B1C1關(guān)于直線l的對(duì)稱圖形是△A2B2C2,寫出△A2B2C2的三個(gè)頂點(diǎn)的坐標(biāo);

(2)如果點(diǎn)P的坐標(biāo)是(﹣a,0),其中a>0,點(diǎn)P關(guān)于y軸的對(duì)稱點(diǎn)是P1,點(diǎn)P1關(guān)于直線l的對(duì)稱點(diǎn)是P2,求PP2的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在平面直角坐標(biāo)系中有A(-2,1),B(3,1),C(2,3)三點(diǎn).請(qǐng)回答下列問題:

(1)在坐標(biāo)系內(nèi)描出點(diǎn)A,B,C的位置.

(2)求出以A,B,C三點(diǎn)為頂點(diǎn)的三角形的面積.

(3)y軸上是否存在點(diǎn)P,使以A,B,P三點(diǎn)為頂點(diǎn)的三角形的面積為10?若存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)經(jīng)過A(﹣1,0),B(4,0),C(0,2)三點(diǎn).

(1)求這條拋物線的解析式;
(2)E為拋物線上一動(dòng)點(diǎn),是否存在點(diǎn)E,使以A、B、E為頂點(diǎn)的三角形與△COB相似?若存在,試求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說明理由;
(3)若將直線BC平移,使其經(jīng)過點(diǎn)A,且與拋物線相交于點(diǎn)D,連接BD,試求出∠BDA的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為了測(cè)量某交通路口設(shè)立的路況顯示牌的立桿AB的高度,在D處用高1.2m的測(cè)角儀CD,測(cè)得最高點(diǎn)A的仰角為32°,已知觀測(cè)點(diǎn)D到立桿AB的距離DB為3.8m,求立桿AB的高度.(結(jié)果精確到0.1m)
【參考數(shù)據(jù):sin32°=0.53,cos32°=0.85,tan32°=0.62】

查看答案和解析>>

同步練習(xí)冊(cè)答案