【題目】(問題探究)課堂上老師提出了這樣的問題:如圖①,在中,,點邊上的一點,,求的長.某同學做了如下的思考:如圖②,過點,交的延長線于點,進而求解,請回答下列問題:

1___________度;

2)求的長.

(拓展應用)如圖③,在四邊形中,,對角線相交于點,且,,則的長為_____________

【答案】【問題探究】(1;(2.【拓展應用】

【解析】

問題探究:

1)由平行線的性質得出∠ACE+BAC=180°,即可得出結果;
2)由平行線的性質得出∠E=BAD=72°,證出AC=AE,由平行線證明ABD∽△ECD,求出AD=2;ED=4,ED=2,得出AC=AE=AD+ED=6;
拓展應用:過點DDFABAC于點F.證明BAE∽△DFE,得出 =2,得出AB=2DF,EF=AE=1AF=AE+EF=3,證出AC=AD,在RtADF中,求出DF=AF×tanCAD=,得出AC=AD=2DF=2,AB=2DF=2,得出AC=AB,在RtABC中,求出BC= AB=2 即可.

解:(1)∵CEAB,
∴∠ACE+BAC=180°
∴∠ACE=180°-108°=72°;
故答案為:72
2)∵CEAB,
∴∠E=BAD=72°,
∴∠E=ACE,
AC=AE
CEAB,
∴△ABD∽△ECD,
,
BD=2CD
=2,
AD=2ED=4,
ED=2,
AC=AE=AD+ED=4+2=6;


拓展應用:
解:如圖3中,過點DDFABAC于點F
ACAB,∴∠BAC=90°,∵DFAB,
∴∠DFA=BAC=90°
∵∠AEB=DEF
∴△BAE∽△DFE,
=2
AB=2DF,EF=AE=1AF=AE+EF=3,
∵∠BAD=120°,
∴∠CAD=30°,
∴∠ACD=75°=ADC
AC=AD,
RtADF中,∵∠CAD=30°,
DF=AF×tanCAD3× ,
AC=AD=2DF=2,AB=2DF=2,
AC=AB,
RtABC中,∵∠BAC=90°,
BC=AB=2;
故答案為:2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形紙片ABCD中,AB=8cmAD=6cm,按下列步驟進行裁剪和拼圖:

第一步:如圖①,在線段AD上任意取一點E,沿EBEC剪下一個三角形紙片EBC(余下部分不再使用);

第二步:如圖②,沿三角形EBC的中位線GH將紙片剪成兩部分,并在線段GH上任意取一點M,線段BC上任意取一點N,沿MN將梯形紙片GBCH剪成兩部分;

第三步:如圖③,將MN左側紙片繞G點按順時針旋轉180,使線段GBGE重合,將MN右側紙片繞H點按逆時針方向旋轉180,使線段HCHE重合,拼成一個與三角形紙片EBC面積相等的四邊形紙片(裁剪和拼圖過程均無縫且不重疊)則拼成的這個四邊形紙片的周長的最大值為___cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,直線y=﹣x+與坐標軸交與點A、B.點Cx軸的負半軸上,且ABAC12

1)求A、C兩點的坐標;

2)若點M從點C出發(fā),以每秒1個單位的速度沿射線CB運動,連接AM,設△ABM的面積為S,點M的運動時間為t,寫出S關于t的函數(shù)關系式,并寫出自變量的取值范圍;

3)點Py軸上的點,在坐標平面內是否存在點Q,使以AB、P、Q為頂點,且以AB為邊的四邊形是菱形,若存在,請直接寫出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了解學生陽光體育運動的實施情況,隨機調查了40名學生一周的體育鍛煉時間,并繪制成了如下圖所示的條形統(tǒng)計圖,根據(jù)統(tǒng)計圖提供的數(shù)據(jù),該校40名同學一周參加體育鍛煉時間的眾數(shù)與中位數(shù)分別是(

A.8,9B.8,8C.98D.10,9

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合與探究:

如圖1,拋物線軸交于兩點(點在點的左側),頂點為,為對稱軸右側拋物線的一個動點,直線軸于點,過點,交軸于點

1)求直線的函數(shù)表達式及點的坐標;

2)如圖2,當軸時,將以每秒1個單位長度的速度沿軸的正方向平移,當點與點重合時停止平移.設平移秒時,在平移過程中與四邊形重疊部分的面積為,求關于的函數(shù)關系式,并寫出自變量的取值范圍;

3)如圖3,過點軸的平行線,交直線于點,直線交于點,設點的橫坐標為

①當時,求的值;

②試探究點在運動過程中,是否存在值,使四邊形是菱形?若存在,請直接寫出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,對角線AC垂直平分BD,∠BAD120°,AB4,點EAB的中點,點FAC上一動點,則EF+BF的最小值是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,過原點的直線與反比例函數(shù)yk0)的圖象交于點AB兩點,在x軸有一點C30),ACBC,連結AC交反比例函數(shù)圖象于點D,若ADCD,則k的值為( 。

A.B.2C.2D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校為了防控新型冠狀病毒,購買了甲、乙兩種消毒液進行校園環(huán)境消毒.己知學校第一次購買了甲種消毒液40瓶和乙種消毒液60瓶,共花費3 600元;第二次購買了甲種消毒液60瓶和乙種消毒液40瓶,共花費3 400元.

1)每瓶甲種消毒液和每瓶乙種消毒液的價格分別是多少元?

2)學校準備第三次購買這兩種消毒液,其中甲種消毒液比乙種消毒液多10瓶,并且總花費不超過3 500元,最多能購買多少瓶甲種消毒液?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=-x2-2x+cx軸的一個交點是(1,0)

1C的值為_______;

2)選取適當?shù)臄?shù)據(jù)補填下表,并在平面直角坐標系內描點畫出該拋物線的圖像;

3)根據(jù)所畫圖像,寫出y>0x的取值范圍是_____

查看答案和解析>>

同步練習冊答案