【題目】如圖,P是邊長為3的等邊△ABC邊AB上一動(dòng)點(diǎn),沿過點(diǎn)P的直線折疊∠B,使點(diǎn)B落在AC上,對應(yīng)點(diǎn)為D,折痕交BC于E,點(diǎn)D是AC的一個(gè)三等分點(diǎn),PB的長為______.
【答案】或
【解析】
兩種情形:①如圖1中,當(dāng)AD=AC=1時(shí),設(shè)PB=x,②如圖2中,當(dāng)AD=AC=2時(shí),利用相似三角形的性質(zhì)求解即可.
解:兩種情形:①如圖1中,當(dāng)AD=AC=1時(shí),設(shè)PB=x,
∵△ABC是等邊三角形,
∴AB=BC=AC=3,∠A=∠B=∠C=60°,
∵∠PDE=∠B=60°,∠PDC=∠PDE+∠EDC=∠A+∠APD,
∴60°+∠EDC=60°+∠APD,
∴∠EDC=∠APD,
∴△APD∽△CDE,
∴,
∴,
∴BE=DE=,EC=,
∵BE+EC=3,
∴+=3,
∴x=.
②如圖2中,當(dāng)AD=AC=2時(shí),
由△APD∽△CDE,可得,
∴,
∴DE=,EC=,
∵BE+EC=3,
∴=3,
∴x=,
綜上所述,PB的長為或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在中,,,點(diǎn)、分別是、的中點(diǎn),連接.
(1)在圖①中,的值為______;的值為______.
(2)若將繞點(diǎn)逆時(shí)針方向旋轉(zhuǎn)得到,點(diǎn)、的對應(yīng)點(diǎn)為、,在旋轉(zhuǎn)過程中的大小是否發(fā)生變化?請僅就圖②的情形給出證明.
(3)當(dāng)在旋轉(zhuǎn)一周的過程中,,,三點(diǎn)共線時(shí),請你直接寫出線段的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在△ABC中,∠C=90°,點(diǎn)O在AC上,以AO為半徑的⊙O交AB于D, BD的垂直平分線交BD于F,交BC于E,連接DE.
(1)求證:DE是⊙O的切線;
(2)若∠B=30°,BC=,且AD∶DF=1∶2,求⊙O的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AC平分∠DAB,AC2=ABAD,∠ADC=90°,點(diǎn)E為AB的中點(diǎn).
(1)求證:△ADC∽△ACB.
(2)若AD=2,AB=3,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】等腰△ABC的直角邊AB=BC=10cm,點(diǎn)P、Q分別從A、C兩點(diǎn)同時(shí)出發(fā),均以1cm/秒的相同速度作直線運(yùn)動(dòng),已知P沿射線AB運(yùn)動(dòng),Q沿邊BC的延長線運(yùn)動(dòng),PQ與直線AC相交于點(diǎn)D.設(shè)P點(diǎn)運(yùn)動(dòng)時(shí)間為t,△PCQ的面積為S.
(1)求出S關(guān)于t的函數(shù)關(guān)系式;
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)幾秒時(shí),S△PCQ=S△ABC?
(3)作PE⊥AC于點(diǎn)E,當(dāng)點(diǎn)P、Q運(yùn)動(dòng)時(shí),線段DE的長度是否改變?證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在平面直角坐標(biāo)系中,△ABC是直角三角形,∠ACB=90°,點(diǎn)A,C的坐標(biāo)分別為A(﹣3,0),C(1,0),tan∠BAC=.
(1)求過點(diǎn)A,B的直線的函數(shù)表達(dá)式;
(2)在x軸上找一點(diǎn)D,連接BD,使得△ADB與△ABC相似(不包括全等),并求點(diǎn)D的坐標(biāo);
(3)在(2)的條件下,如P,Q分別是AB和AD上的動(dòng)點(diǎn),連接PQ,設(shè)AP=DQ=m,問是否存在這樣的m使得△APQ與△ADB相似?如存在,請求出的m值;如不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AD>AB.
(1)作出∠ABC的平分線(尺規(guī)作圖,保留作圖痕跡,不寫作法);
(2)若(1)中所作的角平分線交AD于點(diǎn)E,AF⊥BE,垂足為點(diǎn)O,交BC于點(diǎn)F,連接EF.求證:四邊形ABFE為菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線的對稱軸為,且過點(diǎn),有下列結(jié)論:①>0;②>0;③;④>0.其中正確的結(jié)論是( )
A.①③B.①④C.①②D.②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)y=(x>0)的圖象與直線y=x交于點(diǎn)M,∠AMB=90°,其兩邊分別與兩坐標(biāo)軸的正半軸交于點(diǎn)A、B,四邊形OAMB的面積為6.
(1)求k的值;
(2)點(diǎn)P在(1)的反比例函數(shù)y=(x>0)的圖象上,若點(diǎn)P的橫坐標(biāo)為3,在x軸上有一點(diǎn)D(4,0),若在直線y=x上有動(dòng)點(diǎn)C,構(gòu)成△PDC,其面積為3,請寫出C點(diǎn)的坐標(biāo);
(3)若∠EPF=90°,其兩邊分別為與x軸正半軸,直線y=x交于點(diǎn)E、F,問是否存在點(diǎn)E,使PE=PF?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com