已知拋物線C1與x軸的一個(gè)交點(diǎn)為交于(-4,0),對(duì)稱軸為直線x=-1.5,
并過點(diǎn)(-1,6)
【小題1】求拋物線C1的解析式;
【小題2】求出與拋物線C1關(guān)于原點(diǎn)對(duì)稱的拋物線C2的解析式,并在C1所在的平面直角坐標(biāo)系中畫出C2的圖像;
【小題3】在(2)的條件下,拋物線C1與拋物線C2與相交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)).
①求出點(diǎn)A和點(diǎn)B的坐標(biāo);
②點(diǎn)P在拋物線上,且位于點(diǎn)A和點(diǎn)B之間;點(diǎn)Q在拋物線上,也位于點(diǎn)A和點(diǎn)B之間.當(dāng)PQ∥軸時(shí),求PQ長度的最大值.

【小題1】C1
【小題2】
【小題3】①A (-2,6);B (2,-6)②PQ的最大值為8解析:
⑴ C1                  ……2分
                   ……4分
其圖像如圖所示                            ……5分
⑶ ①A (-2,6);B (2,-6)                  ……7分
② 設(shè)P(a,b),則-2≤a≤2,,
因?yàn)镻Q∥y軸,所以點(diǎn)Q的橫坐標(biāo)為a,則
所以PQ==,                  ……9分
即當(dāng)a=0時(shí),PQ的最大值為8
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知拋物線C1與x軸的一個(gè)交點(diǎn)為交于(-4,0),對(duì)稱軸為x=-1.5,并過點(diǎn)(-1,6),
(1)求拋物線C1的解析式;
(2)求出與拋物線C1關(guān)于原點(diǎn)對(duì)稱的拋物線C2的解析式,并在C1所在的平面直角坐標(biāo)系中畫出C2的圖象;
(3)在(2)的條件下,拋物線C1與拋物線C2與相交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),
①求出點(diǎn)A和點(diǎn)B的坐標(biāo);
②點(diǎn)P在拋物線C1上,且位于點(diǎn)A和點(diǎn)B之間;點(diǎn)Q在拋物線C2上,也位于點(diǎn)A和點(diǎn)B之間、當(dāng)PQ∥y軸時(shí),求PQ長度的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•燕山區(qū)一模)己知二次函數(shù)y1=x2-2tx+(2t-1)(t>1)的圖象為拋物線C1
(1)求證:無論t取何值,拋物線C1與y軸總有兩個(gè)交點(diǎn);
(2)已知拋物線C1與x軸交于A、B兩點(diǎn)(A在B的左側(cè)),將拋物線C1作適當(dāng)?shù)钠揭,得拋物線C2y2=(x-t)2,平移后A、B的對(duì)應(yīng)點(diǎn)分別為D(m,n),E(m+2,n),求n的值.
(3)在(2)的條件下,將拋物線C2位于直線DE下方的部分沿直線DE向上翻折后,連同C2在DE上方的部分組成一個(gè)新圖形,記為圖形G,若直線y=-
12
x+b
(b<3)與圖形G有且只有兩個(gè)公共點(diǎn),請(qǐng)結(jié)合圖象求b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011—2012學(xué)年江蘇無錫育才中學(xué)第二學(xué)期第一次模擬考試數(shù)學(xué)卷(帶解析) 題型:解答題

已知拋物線C1與x軸的一個(gè)交點(diǎn)為交于(-4,0),對(duì)稱軸為直線x=-1.5,
并過點(diǎn)(-1,6)
【小題1】求拋物線C1的解析式;
【小題2】求出與拋物線C1關(guān)于原點(diǎn)對(duì)稱的拋物線C2的解析式,并在C1所在的平面直角坐標(biāo)系中畫出C2的圖像;
【小題3】在(2)的條件下,拋物線C1與拋物線C2與相交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)).
①求出點(diǎn)A和點(diǎn)B的坐標(biāo);
②點(diǎn)P在拋物線上,且位于點(diǎn)A和點(diǎn)B之間;點(diǎn)Q在拋物線上,也位于點(diǎn)A和點(diǎn)B之間.當(dāng)PQ∥軸時(shí),求PQ長度的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省無錫市育才中學(xué)九年級(jí)(下)期中數(shù)學(xué)試卷(解析版) 題型:解答題

已知拋物線C1與x軸的一個(gè)交點(diǎn)為交于(-4,0),對(duì)稱軸為x=-1.5,并過點(diǎn)(-1,6),
(1)求拋物線C1的解析式;
(2)求出與拋物線C1關(guān)于原點(diǎn)對(duì)稱的拋物線C2的解析式,并在C1所在的平面直角坐標(biāo)系中畫出C2的圖象;
(3)在(2)的條件下,拋物線C1與拋物線C2與相交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),
①求出點(diǎn)A和點(diǎn)B的坐標(biāo);
②點(diǎn)P在拋物線C1上,且位于點(diǎn)A和點(diǎn)B之間;點(diǎn)Q在拋物線C2上,也位于點(diǎn)A和點(diǎn)B之間、當(dāng)PQ∥y軸時(shí),求PQ長度的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年江蘇省無錫市錫山高級(jí)中學(xué)實(shí)驗(yàn)學(xué)校中考適應(yīng)性訓(xùn)練數(shù)學(xué)試卷(解析版) 題型:解答題

已知拋物線C1與x軸的一個(gè)交點(diǎn)為交于(-4,0),對(duì)稱軸為x=-1.5,并過點(diǎn)(-1,6),
(1)求拋物線C1的解析式;
(2)求出與拋物線C1關(guān)于原點(diǎn)對(duì)稱的拋物線C2的解析式,并在C1所在的平面直角坐標(biāo)系中畫出C2的圖象;
(3)在(2)的條件下,拋物線C1與拋物線C2與相交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),
①求出點(diǎn)A和點(diǎn)B的坐標(biāo);
②點(diǎn)P在拋物線C1上,且位于點(diǎn)A和點(diǎn)B之間;點(diǎn)Q在拋物線C2上,也位于點(diǎn)A和點(diǎn)B之間、當(dāng)PQ∥y軸時(shí),求PQ長度的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案