【題目】如圖所示,在△ABC 中,AD BC 邊上的中線.

(1)畫出與ACD 關于點 D 成中心對稱的三角形;

(2)找出與 AC 相等的線段;

(3)探索:ABC 中,AB+AC 與中線 AD 之間的關系,并說明理由.

【答案】(1)詳見解析;(2)A'B=AC;(3)AB+AC>2AD,理由詳見解析.

【解析】

(1)作圖;

(2)證明ADC≌△A'DB,可知AC=A'B;

(3)根據(jù)三角形三邊關系得:AB+BA'>AA',即AB+AC>AD+A'D,所以AB+AC>2AD.

(1)如圖所示,延長 AD A',使 AD=A'D,連接 A'B,則A'DB 就是與ACD 關于點 D 成中心對稱的三角形;

(2)A'B=AC,

理由是:在ADC A'DB 中,

,

∴△ADC≌△A'DB(SAS),

AC=A'B;

(3)AB+AC>2AD;

理由:∵△ADC A'DB 關于 D 點成中心對稱,

AD=A'D,AC=A'B.

ABA'中,AB+BA'>AA', AB+AC>AD+A'D.

AB+AC>2AD.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某中學開展“唱紅歌”比賽活動,九年級(1)、(2)班根據(jù)初賽成績,各選出5名選手參加復賽,兩個班各選出的5名選手的復賽成績?nèi)鐖D所示.

班級

平均數(shù)(分)

中位數(shù)

眾數(shù)

九(1)

85

85

九(2)

80

(1)根據(jù)圖示填寫上表;

(2)結(jié)合兩班復賽成績的平均數(shù)和中位數(shù),分析哪個班級的復賽成績較好;

(3)計算兩班復賽成績的方差,并說明哪個班級的成績較穩(wěn)定.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△AOB是等邊三角形,且B2,0),OCAB邊的中線,將△AOB繞點O逆時針旋轉(zhuǎn)120°得到△A1OB1

1B1的坐標是_______(直接寫出結(jié)果即可);

2)請畫出將△A1OB1繞點O逆時針旋轉(zhuǎn)120°得到的△A2OB2,并按圖形旋轉(zhuǎn)規(guī)律畫出陰影部分;

3)計算點B旋轉(zhuǎn)到點B1所經(jīng)過的弧形路線長(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點A1,a)是直線y1=2x與雙曲線y2=在第一象限的交點.

1)求雙曲線的解析式;

2)直接寫出當y1y2時,自變量的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店需要購進甲、乙兩種商品共160件,其進價和售價如下表:(注:獲利=售價-進價)

1)若商店計劃銷售完這批商品后能獲利1100元,問甲、乙兩種商品應分別購進多少件?

2)若商店計劃投入資金少于4300元,且銷售完這批商品后獲利多于1260元,請問有哪幾種購貨方案?并直接寫出其中獲利最大的購貨方案。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,線段、相交于,連結(jié)、,我們把形如圖的圖形稱之為字形,如圖,在圖的條件下,的平分線相交于點,并且與分別相交于、,試解答下列問題:

(1)在圖中,請直接寫出、、、之間的數(shù)量關系:__________

(2)仔細觀察,在圖字形的個數(shù):______個;

(3)中,當度,度時,求的度數(shù).

(4)為任意角時,其它條件不變,試問之間存在著怎樣的數(shù)量關系?(直接寫出結(jié)果,不必證明)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,C為⊙O上一點,CD⊥AB于點DPAB延長線上一點,∠PCD=2∠BAC

1求證:CP為⊙O的切線;

2BP=1,CP=,求 ⊙O的半徑;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC和△DEF中,∠ACB=EFD=90°,點BF、C、D在同一直線上,已知ABDE,且AB=DEAC=6,EF=8,DB=10,則CF的長度為___________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場計劃購進A、B兩種商品,若購進A種商品2件和B種商品1件需45元;若購進A種商品3件和B種商品2件需70元.

(1)A、B兩種商品每件的進價分別是多少元?

(2)若購進A、B兩種商品共100件,總費用不超過1000元,最多能購進A種商品多少件?

查看答案和解析>>

同步練習冊答案