【題目】如圖,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分線分別交AB和AC于點(diǎn)D,E,AE=2,CE= .
【答案】1
【解析】解:∵DE是AB的垂直平分線, ∴BE=AE=2,∠ABE=∠A=30°,
∵∠ACB=90°,∠A=30°,
∴∠ABC=60°,
∴∠CBE=30°,
∴CE= BE=1,
所以答案是:1.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解線段垂直平分線的性質(zhì)的相關(guān)知識(shí),掌握垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質(zhì)定理:線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等,以及對(duì)含30度角的直角三角形的理解,了解在直角三角形中,如果一個(gè)銳角等于30°,那么它所對(duì)的直角邊等于斜邊的一半.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中∠ACB=90°,E在AB上,以AE為直徑的⊙O與BC相切于D,與AC相交于F,連接AD.
(1)求證:AD平分∠BAC;
(2)連接OC,如果∠B=30°,CF=1,求OC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正比例函數(shù)y=kx(k>0)與反比例函數(shù)y= 的圖象分別交于A、C兩點(diǎn),已知點(diǎn)B與點(diǎn)D關(guān)于坐標(biāo)原點(diǎn)O成中心對(duì)稱,且點(diǎn)B的坐標(biāo)為(m,0).其中m>0.
(1)四邊形ABCD的是 . (填寫四邊形ABCD的形狀)
(2)當(dāng)點(diǎn)A的坐標(biāo)為(n,3)時(shí),四邊形ABCD是矩形,求m,n的值.
(3)試探究:隨著k與m的變化,四邊形ABCD能不能成為菱形?若能,請(qǐng)直接寫出k的值;若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平行四邊形ABCD中,BE⊥CD,BF⊥AD,垂足分別為E、F,若CE=2,DF=1,∠EBF=60°,求平行四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】大美山水“硒都恩施”是一張亮麗的名片,八方游客慕名而來,今年“五一”期間,恩施州共接待游客1450000人,將1450000用科學(xué)記數(shù)法表示為( )
A.0.145×106
B.14.5×105
C.1.45×105
D.1.45×106
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,D為AB上一點(diǎn),以CD為直徑的⊙O交BC于點(diǎn)E,連接AE交CD于點(diǎn)P,交⊙O于點(diǎn)F,連接DF,∠CAE=∠ADF.
(1)判斷AB與⊙O的位置關(guān)系,并說明理由;
(2)若PF:PC=1:2,AF=5,求CP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有理數(shù)a,b,c在數(shù)軸上的位置如圖所示,且|a|=|c|.
(1)若|a+c|+|b|=2,求b的值;
(2)用“>”從大到小把a(bǔ),b,﹣b,c連接起來.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列信息;據(jù)報(bào)道,全世界受到威脅的動(dòng)物種類數(shù)如下表所示.請(qǐng)你按照下面要求回答問題:
全世界受到威脅的動(dòng)物種類數(shù) | ||||
動(dòng)物分類 | 哺乳類 | 鳥類 | 爬行類 | 兩棲類 |
受到威脅的種類數(shù)(種) | 約1100 | 約1100 | 約300 | 約100 |
(1)制作適當(dāng)?shù)慕y(tǒng)計(jì)圖表示表中的數(shù)據(jù),你選擇的統(tǒng)計(jì)圖是____________________;
(2)通過學(xué)習(xí)本題,請(qǐng)你寫一句20字左右的感想.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com