【題目】如圖,二次函數(shù)y=x2+bx+c的圖象與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,且關(guān)于直線x=1對(duì)稱,點(diǎn)A的坐標(biāo)為(﹣1,0).
(1)求二次函數(shù)的表達(dá)式;
(2)連接BC,若點(diǎn)P在y軸上時(shí),BP和BC的夾角為15°,求線段CP的長(zhǎng)度;
(3)當(dāng)a≤x≤a+1時(shí),二次函數(shù)y=x2+bx+c的最小值為2a,求a的值.
【答案】(1)y=x2﹣2x﹣3;(2)CP的長(zhǎng)為3﹣或3﹣3;(3)a的值為1﹣或2+.
【解析】
(1)先根據(jù)題意得出點(diǎn)B的坐標(biāo),再利用待定系數(shù)法求解可得;
(2)分點(diǎn)P在點(diǎn)C上方和下方兩種情況,先求出∠OBP的度數(shù),再利用三角函數(shù)求出OP的長(zhǎng),從而得出答案;
(3)分對(duì)稱軸x=1在a到a+1范圍的右側(cè)、中間和左側(cè)三種情況,結(jié)合二次函數(shù)的性質(zhì)求解可得.
(1)∵點(diǎn)A(﹣1,0)與點(diǎn)B關(guān)于直線x=1對(duì)稱,
∴點(diǎn)B的坐標(biāo)為(3,0),
代入y=x2+bx+c,得:
,
解得,
所以二次函數(shù)的表達(dá)式為y=x2﹣2x﹣3;
(2)如圖所示:
由拋物線解析式知C(0,﹣3),
則OB=OC=3,
∴∠OBC=45°,
若點(diǎn)P在點(diǎn)C上方,則∠OBP=∠OBC﹣∠PBC=30°,
∴OP=OBtan∠OBP=3×=,
∴CP=3﹣;
若點(diǎn)P在點(diǎn)C下方,則∠OBP′=∠OBC+∠P′BC=60°,
∴OP′=OBtan∠OBP′=3×=3,
∴CP=3﹣3;
綜上,CP的長(zhǎng)為3﹣或3﹣3;
(3)若a+1<1,即a<0,
則函數(shù)的最小值為(a+1)2﹣2(a+1)﹣3=2a,
解得a=1﹣(正值舍去);
若a<1<a+1,即0<a<1,
則函數(shù)的最小值為1﹣2﹣3=2a,
解得:a=﹣2(舍去);
若a>1,
則函數(shù)的最小值為a2﹣2a﹣3=2a,
解得a=2+(負(fù)值舍去);
綜上,a的值為1﹣或2+.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在等邊△ABC中,D是BC的中點(diǎn),P為AB 邊上的一個(gè)動(dòng)點(diǎn),設(shè)AP=x,圖1中線段DP的長(zhǎng)為y,若表示y與x的函數(shù)關(guān)系的圖象如圖2所示,則△ABC的面積為( )
A. 4 B. C. 12 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,兩個(gè)半徑相等的直角扇形的圓心分別在對(duì)方的圓弧上,半徑AE、CF交于點(diǎn)G,半徑BE、CD交于點(diǎn)H,且點(diǎn)C是弧AB的中點(diǎn),若扇形的半徑為,則圖中陰影部分的面積等于_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有紅、黃兩個(gè)盒子,紅盒子中藏有三張分別標(biāo)有數(shù)字,,1的卡片,黃盒子中藏有三張分別標(biāo)有數(shù)字1,3,2的卡片,卡片外形相同.現(xiàn)甲從紅盒子中取出一張卡片,乙從黃盒子中取出一張卡片,并將它們的數(shù)字分別記為a,b.
(1)請(qǐng)你用樹形圖或列表法列出所有可能的結(jié)果.
(2)現(xiàn)制定這樣一個(gè)游戲規(guī)則:若所選出的a,b能使得二次函數(shù)y=ax2+bx+1的圖像與x軸有兩個(gè)不同的交點(diǎn),則稱甲獲勝;否則稱乙獲勝.請(qǐng)問(wèn)這樣的游戲規(guī)則公平嗎?請(qǐng)你用概率知識(shí)解釋.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)的坐標(biāo)分別為和,拋物線的頂點(diǎn)在線段上運(yùn)動(dòng),與軸交于兩點(diǎn)(在的左側(cè)),若點(diǎn)的橫坐標(biāo)的最小值為0,則點(diǎn)的橫坐標(biāo)最大值為( )
A.6B.7C.8D.9
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了慶祝中華人民共和國(guó)成立70周年,某市決定開(kāi)展“我和祖國(guó)共成長(zhǎng)”主題演講比賽,某中學(xué)將參加本校選拔賽的40名選手的成績(jī)(滿分為100分,得分為正整數(shù)且無(wú)滿分,最低為75分)分成五組,并繪制了下列不完整的統(tǒng)計(jì)圖表.
分?jǐn)?shù)段 | 頻數(shù) | 頻率 |
74.5~79.5 | 2 | 0.05 |
79.5~84.5 | m | 0.2 |
84.5~89.5 | 12 | 0.3 |
89.5~94.5 | 14 | n |
94.5~99.5 | 4 | 0.1 |
(1)表中m=__________,n=____________;
(2)請(qǐng)?jiān)趫D中補(bǔ)全頻數(shù)直方圖;
(3)甲同學(xué)的比賽成績(jī)是40位參賽選手成績(jī)的中位數(shù),據(jù)此推測(cè)他的成績(jī)落在_________分?jǐn)?shù)段內(nèi);
(4)選拔賽中,成績(jī)?cè)?/span>94.5分以上的選手,男生和女生各占一半,學(xué)校從中隨機(jī)確定2名選手參加全市決賽,請(qǐng)用列舉法或樹狀圖法求恰好是一名男生和一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:△ABC在坐標(biāo)平面內(nèi),三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,3),B(3,4),C(2,2).(正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)是1個(gè)單位長(zhǎng)度).
(1)作出△ABC繞點(diǎn)A順時(shí)針?lè)较蛐D(zhuǎn)90°后得到的△A1B1C1,并直接寫出C1點(diǎn)的坐標(biāo);
(2)作出△ABC關(guān)于原點(diǎn)O成中心對(duì)稱的△A2B2C2,并直接寫出B2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某縣美化城市工程招投標(biāo)中,有甲、乙兩個(gè)工程隊(duì)投標(biāo)經(jīng)測(cè)算:甲隊(duì)單獨(dú)完成這項(xiàng)工程需要30天,若由甲隊(duì)先做10天,剩下的工程由甲、乙合作12天可完成.問(wèn):
(1)乙隊(duì)單獨(dú)完成這項(xiàng)工程需要多少天?
(2)甲隊(duì)施工一天需付工程款3.5萬(wàn)元,乙隊(duì)施工一天需工程款2萬(wàn)元,該工程計(jì)劃用時(shí)不超過(guò)35天,在不超過(guò)計(jì)劃天數(shù)的前提下,由甲隊(duì)先單獨(dú)施工若干天,剩下的工程由乙隊(duì)單獨(dú)完成,那么安排甲隊(duì)單獨(dú)施工多少天工程款最?最省的工程款是多少萬(wàn)元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC=2,∠BAC=45°,△AEF是由△ABC繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)得到的,連接BE、CF相交于點(diǎn)D.
(1)求證:BE=CF;
(2)當(dāng)四邊形ABDF為菱形時(shí),求CD的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com