【題目】已知A(-4,2)、B(n,-4)兩點(diǎn)是一次函數(shù)y=kx+b和反比例函數(shù)圖象的兩個(gè)交點(diǎn).
(1)求一次函數(shù)和反比例函數(shù)的解析式.
(2)求的面積.
(3)觀察圖象,直接寫(xiě)出不等式的解集.
【答案】(1)一次函數(shù)解析式為:y=-x-2;反比例函數(shù)解析式為:;(2)6;(3)x<-4或0<x<2
【解析】
(1)先把點(diǎn)A的坐標(biāo)代入反比例函數(shù)解析式,即可得到m=-8,再把點(diǎn)B的坐標(biāo)代入反比例函數(shù)解析式,即可求出n=2,然后利用待定系數(shù)法確定一次函數(shù)的解析式;(2)先求出直線y=-x-2與x軸交點(diǎn)C的坐標(biāo),然后利用S△AOB=S△AOC+S△BOC進(jìn)行計(jì)算;(3)觀察函數(shù)圖象得到當(dāng)x<-4或0<x<2時(shí),一次函數(shù)的圖象在反比例函數(shù)圖象上方,據(jù)此可得不等式的解集.
解:
把A(-4,2)代入y=,得m=2×(-4)=-8,
所以反比例函數(shù)解析式為y=,
把B(n,-4)代入y=,得-4n=-8,
解得n=2,
把A(-4,2)和B(2,-4)代入y=kx+b,得 ,
解得,
所以一次函數(shù)的解析式為y=-x-2;
(2)y=-x-2中,令y=0,則x=-2,
即直線y=-x-2與x軸交于點(diǎn)C(-2,0),
∴S△AOB=S△AOC+S△BOC=×2×2+×2×4=6;
(3)由圖可得,不等式kx+b->0的解集為:x<-4或0<x<2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABD與△AEC都是等邊三角形,AB≠AC.下列結(jié)論中,正確的是 .①BE=CD;②∠BOD=60;③△BOD∽△COE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c中,函數(shù)y與自變量x的部分對(duì)應(yīng)值如表:
x | … | ﹣1 | 0 | 1 | 2 | 3 | … |
y | … | m | 5 | 2 | 1 | 2 | … |
則m的值是_____,當(dāng)y<5時(shí),x的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】參照學(xué)習(xí)函數(shù)的過(guò)程方法,探究函數(shù)的圖像與性質(zhì),因?yàn)?/span>,即,所以我們對(duì)比函數(shù)來(lái)探究列表:
… | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | … | ||||
… | 1 | 2 | 4 | -4 | -2 | -1 | <> | … | |||||
… | 2 | 3 | 5 | -3 | -2 | 0 | … |
描點(diǎn):在平面直角坐標(biāo)系中以自變量的取值為橫坐標(biāo),以相應(yīng)的函數(shù)值為縱坐標(biāo),描出相應(yīng)的點(diǎn)如圖所示:
(1)請(qǐng)把軸左邊各點(diǎn)和右邊各點(diǎn)分別用一條光滑曲線,順次連接起來(lái);
(2)觀察圖象并分析表格,回答下列問(wèn)題:
①當(dāng)時(shí),隨的增大而______;(“增大”或“減小”)
②的圖象是由的圖象向______平移______個(gè)單位而得到的;
③圖象關(guān)于點(diǎn)______中心對(duì)稱.(填點(diǎn)的坐標(biāo))
(3)函數(shù)與直線交于點(diǎn),,求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某校數(shù)學(xué)興趣小組為測(cè)量校園主教學(xué)樓AB的高度,由于教學(xué)樓底部不能直接到達(dá),故興趣小組在平地上選擇一點(diǎn)C,用測(cè)角器測(cè)得主教學(xué)樓頂端A的仰角為30°,再向主教學(xué)樓的方向前進(jìn)24米,到達(dá)點(diǎn)E處(C,E,B三點(diǎn)在同一直線上),又測(cè)得主教學(xué)樓頂端A的仰角為60°,已知測(cè)角器CD的高度為1.6米,請(qǐng)計(jì)算主教學(xué)樓AB的高度.(≈1.73,結(jié)果精確到0.1米)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A(m,m+1),B(m+3,m1)都在反比例函數(shù)的圖象上,如果M為x軸上一點(diǎn),N為y軸上一點(diǎn),以點(diǎn)A,B,M,N為頂點(diǎn)的四邊形是平行四邊形,直接寫(xiě)出點(diǎn)M,N的坐標(biāo):____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=6,將△ABC繞點(diǎn)C按逆時(shí)針?lè)较蛐D(zhuǎn)得到△A'B'C',此時(shí)點(diǎn)A'恰好在AB邊上,則點(diǎn)B'與點(diǎn)B之間的距離為( )
A. 12 B. 6 C. 6 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等邊三角形ABC的頂點(diǎn)在⊙O上,點(diǎn)P是劣弧上的一點(diǎn)(端點(diǎn)除外),延長(zhǎng)BP至點(diǎn)D,使BD=AP,連結(jié)CD.
(1)若AP過(guò)圓心O,如圖①,請(qǐng)你判斷△PDC是什么三角形?并說(shuō)明理由;
(2)若AP不過(guò)圓心O,如圖②,△PDC又是什么三角形?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的網(wǎng)格是正方形網(wǎng)格,線段AB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α(0°<α<180°)后與⊙O相切,則α的值為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com