【題目】如圖,在中,,點是邊上的動點,連接,以為斜邊在的下方作等腰直角三角形.
(1)填空:的面積等于 ;
(2)連接,求證:是的平分線;
(3)點在邊上,且, 當從點出發(fā)運動至點停止時,求點相應的運動路程.
【答案】(1);(2)證明見解析;(3)
【解析】
(1)根據直角三角形的面積計算公式直接計算可得;
(2)如圖所示作出輔助線,證明△AEM≌△DEN(AAS),得到ME=NE,即可利用角平分線的判定證明;
(3)由(2)可知點E在∠ACB的平分線上,當點D向點B運動時,點E的路徑為一條直線,再根據全等三角形的性質得出CN=,根據CD的長度計算出CE的長度即可.
解:(1)
∴,
故答案為:
(2)連接CE,過點E作EM⊥AC于點M,作EN⊥BC于點N,
∴∠EMA=∠END=90°,
又∵∠ACB=90°,
∴∠MEN=90°,
∴∠MED+∠DEN=90°,
∵△ADE是等腰直角三角形
∴∠AED=90°,AE=DE
∴∠AEM+∠MED=90°,
∴∠AEM=∠DEN
∴在△AEM與△DEN中,
∠EMA=∠END=90°,∠AEM=∠DEN,AE=DE
∴△AEM≌△DEN(AAS)
∴ME=NE
∴點E在∠ACB的平分線上,
即是的平分線
(3)由(2)可知,點E在∠ACB的平分線上,
∴當點D向點B運動時,點E的路徑為一條直線,
∵△AEM≌△DEN
∴AM=DN,
即AC-CM=CN-CD
在Rt△CME與Rt△CNE中,CE=CE,ME=NE,
∴Rt△CME≌Rt△CNE(HL)
∴CM=CN
∴CN=,
又∵∠MCE=∠NCE=45°,∠CME=90°,
∴CE=,
當AC=3,CD=CO=1時,
CE=
當AC=3,CD=CB=7時,
CE=
∴點E的運動路程為:,
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC和△DEF中,已有條件AB=DE,還需要添加兩個條件才能使△ABC≌△DEF.不能添加的一組條件是( )
A. ∠B=∠E,BC=EF B. ∠A=∠D,BC=EF
C. ∠A=∠D,∠B=∠E D. BC=EF,AC=DF
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,E是AD邊的中點,BE⊥AC,垂足為點F,連接DF,分析下列四個結論:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=.其中正確的結論有( 。
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=15.sin∠A=,點D是BC的中點,點P是AB上一動點(不與點B重合),延長PD至E,使DE=PD,連接EB、EC.
(1)求證;四邊形PBEC是平行四邊形;
(2)填空:
①當AP的值為 時,四邊形PBEC是矩形;
②當AP的值為 時,四邊形PBEC是菱形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某中學數學興趣小組為了了解本校學生的年齡情況,隨機調查了該校部分學生的年齡,整理數據并繪制如下不完整的統(tǒng)計圖.依據以下信息解答問題:
(1)此次共調查了多少人?
(2)求“年齡歲”在扇形統(tǒng)計圖中所占圓心角的度數;
(3)請將條形統(tǒng)計圖補充完整.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,直線l與⊙O相切于點C且,弦CD交AB于E,BF⊥l,垂足為F,BF交⊙O于G.
(1)求證:CE2=FGFB;
(2)若tan∠CBF=,AE=3,求⊙O的直徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】綜合與探究:
(1)操作發(fā)現(xiàn):如圖1,點D是等邊△ABC邊BA上一動點(點D與點B不重合),連結DC,以DC為邊在CD上方作等邊△DCE,連結AE.你能發(fā)現(xiàn)線段AE與BD之間的數量關系嗎? 證明你發(fā)現(xiàn)的結論.
(2)類比猜想:如圖2,當動點D運動至等邊△ABC邊BA的延長線上時,其余條件不變,猜想:(1)中的結論是否成立,不用說明理由.
(3)拓展探究:如圖3,當動點D在等邊△ABC邊BA上運動時(點D與點B不重合),連結 DC,以DC為邊在CD上方和下方分別作等邊△DCE和等邊△DCE′,連結AE、BE′,探究:AE、BE′與AB有何數量關系?并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,過點A(2,0)的兩條直線,分別交軸于B,C,其中點B在原點上方,點C在原點下方,已知AB=.
(1)求點B的坐標;
(2)若△ABC的面積為4,求的解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=8,BC=6,D、E分別是AB和BC上的點.把△ABC沿著直線DE折疊,頂點B對應點是點B′
(1)如圖1,點B′恰好落在線段AC的中點處,求CE的長;
(2)如圖2,點B′落在線段AC上,當BD=BE時,求B′C的長;
(3)如圖3,E是BC的中點,直接寫出AB′的最小值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com