(2012•渝北區(qū)一模)如圖四邊形ABCD是菱形,且∠ABC=60,△ABE是等邊三角形,M為對角線BD(不含B點(diǎn))上任意一點(diǎn),將BM繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到BN,連接EN、AM、CM,則下列五個結(jié)論中正確的是( 。
①若菱形ABCD的邊長為1,則AM+CM的最小值1;
②△AMB≌△ENB;
③S四邊形AMBE=S四邊形ADCM;④連接AN,則AN⊥BE;
⑤當(dāng)AM+BM+CM的最小值為2
3
時(shí),菱形ABCD的邊長為2.
分析:(1)連接AC,根據(jù)“兩點(diǎn)之間線段最短”,可得,當(dāng)M點(diǎn)落在BD的中點(diǎn)時(shí),AM+CM的值最;
(2)由題意得MB=NB,∠ABN=30°,所以∠EBN=30°,容易證出△AMB≌△ENB;
(3)連接AC,可以得到S△ABE=S△ADC,S△AMB≠S△AMC,從而可以得出結(jié)論.
(4)假設(shè)AN⊥BE,根據(jù)等腰三角形的性質(zhì)及垂直平分線的性質(zhì)得出EN=BN,從而得出結(jié)論.
(5)根據(jù)“兩點(diǎn)之間線段最短”,當(dāng)M點(diǎn)位于BD與CE的交點(diǎn)處時(shí),AM+BM+CM的值最小,即等于EC的長,(如圖)作輔助線,過E點(diǎn)作EF⊥BC交CB的延長線于F,由題意求出∠EBF=60°,設(shè)菱形的邊長為x,在Rt△EFC中,根據(jù)勾股定理求得菱形的邊長.
解答:解:①連接AC,交BD于點(diǎn)O,
∵四邊形ABCD是菱形,
∴AB=BC,BD⊥AC,AO=BO
∴點(diǎn)A,點(diǎn)C關(guān)于直線BD對稱,
∴M點(diǎn)與O點(diǎn)重合時(shí)AM+CM的值最小為AC的值
∵∠ABC=60,
∴△ABC是等邊三角形,
∴AB=AC,
∵AB=1,
∴AC=1,
即AM+CM的值最小為1,故本答案正確.
②∵△ABE是等邊三角形,
∴BA=BE,∠ABE=60°.
∵∠MBN=60°,
∴∠MBN-∠ABN=∠ABE-∠ABN.
即∠MBA=∠NBE.
又∵M(jìn)B=NB,
∴△AMB≌△ENB(SAS),故本答案正確.
③∵S△ABE+S△ABM=S四邊形AMBE
S△ACD+S△AMC=S四邊形ADCM,且S△AMB≠S△AMC,
∴S△ABE+S△ABM≠S△ACD+S△AMC,
∴S四邊形AMBE≠S四邊形ADCM,故本答案錯誤.
④假設(shè)AN⊥BE,且AE=AB,
∴AN是BE的垂直平分線,
∴EN=BN=BM=MN,
∴M點(diǎn)與O點(diǎn)重合,
∵條件沒有確定M點(diǎn)與O點(diǎn)重合,故本答案錯誤.
⑤如圖,連接MN,由(1)知,△AMB≌△ENB,
∴AM=EN,
∵∠MBN=60°,MB=NB,
∴△BMN是等邊三角形.
∴BM=MN.
∴AM+BM+CM=EN+MN+CM.(10分)
根據(jù)“兩點(diǎn)之間線段最短”,得EN+MN+CM=EC最短
∴當(dāng)M點(diǎn)位于BD與CE的交點(diǎn)處時(shí),AM+BM+CM的值最小,即等于EC的長.
過E點(diǎn)作EF⊥BC交CB的延長線于F,
∴∠EBF=180°-120°=60°,設(shè)菱形的邊長為x,
∴BF=
1
2
x,EF=
3
2
x,在Rt△EFC中,
∵EF2+FC2=EC2,
(
3
2
x)
2
+(
1
2
x+x)
2
=(2
3
)
2
,解得x=2,故本答案正確.
綜上所述,正確的答案是:①②⑤,
故選C.
點(diǎn)評:本題考查了菱形的性質(zhì),全等三角形的判定與性質(zhì),等邊三角形的性質(zhì),軸對稱最短路線問題和旋轉(zhuǎn)的問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)分式方程
x-3
x-2
+1=
3
2-x
的解是
x=1
x=1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)△ABC與△DEF相似且面積的比為9:16,則△ABC與△DEF的周長比為
3:4
3:4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)計(jì)算(-3)2+(
1
2
)
-2
×(π-
3
)
0
-
4
+tan 45?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)尺規(guī)作圖:已知線段a,作一個等腰△ABC,使底邊長為a,底邊上的高為
12
a
.(要求:寫出已知求作,保留作圖痕跡,在所作圖中標(biāo)出必要的字母,不寫作法和結(jié)論)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)某校初三(20)班全班50名同學(xué)積極參與向貧困山區(qū)的留守兒童捐款獻(xiàn)愛心活動,團(tuán)支部利用兩種統(tǒng)計(jì)圖對本班捐款情況進(jìn)行統(tǒng)計(jì):
(1)已知該班40%的同學(xué)為團(tuán)員;請求全班捐款的金額的中位數(shù),團(tuán)員同學(xué)捐款的平均數(shù),并補(bǔ)全兩個統(tǒng)計(jì)圖.
(2)現(xiàn)要在捐款50元、60元的同學(xué)中隨機(jī)各抽一名代表參加“下鄉(xiāng)與留守兒童手拉手”活動,并且知道捐款50元的同學(xué)中有兩名女團(tuán)員捐款60元的同學(xué)中有一名女團(tuán)員,請用樹狀圖或列表法求出兩名代表剛好為一男一女的概率.

查看答案和解析>>

同步練習(xí)冊答案