【題目】如圖,某路燈在鉛垂面內的示意圖,燈柱AB的高為13米,燈桿BC與燈柱AB的夾角∠B120°,路燈采用錐形燈罩,在地面上的照射區(qū)域DE長為20米,已知tanCDE,tanCED,求燈桿BC的長度.

【答案】燈桿CB的長度為2

【解析】

過點CCFAE,交AE于點F,過點BBGCF,交CF于點G,設CF7x,則EF8x,根據銳角三角函數(shù)的性質求出x的值,即CG1,再根據含30°角的直角三角形的性質求出BC的長度即可.

解:過點CCFAE,交AE于點F,過點BBGCF,交CF于點G,則FGBA13

tanCDE,tanCED,

CF7x,則EF8x

RtCDF中,

tanCDF,

DF,

DE20

2x+8x20

x2

CGCFGF14131

∵∠ABC120°,

∴∠CBG=∠ABC﹣∠ABG120°90°30°

CB2CG2,

答:燈桿CB的長度為2米.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,若點M軸正半軸上任意一點,過點MPQ∥軸,分別交函數(shù)的圖象于點PQ,連接OPOQ.則下列結論正確的是(

A.∠POQ不可能等于90°B.

C.這兩個函數(shù)的圖象一定關于軸對稱D.△POQ的面積是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是垂直于水平面的建筑物,為測量的高度,小紅從建筑物底端出發(fā),沿水平方向行走了52米到達點,然后沿斜坡前進,到達坡頂點處,.在點處放置測角儀,測角儀支架高度為0.8米,在點處測得建筑物頂端點的仰角(點,,在同一平面內),斜坡的坡度(或坡比),求建筑物的高度.(精確到個位)(參考數(shù)據:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖1,拋物線是由拋物線向右平移1個單位,再向下平移4個單位得到的,軸交于,兩點(的右側),直線經過點,與軸交于點.

1)分別求出,的值;

2)如圖2,已知點是線段上任一點(不與重合),過點作軸垂線,交拋物線點.當在何處時,四邊形面積最大,求出此時點坐標及四邊形面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題探究,

(1)如圖①,在矩形ABCD中,AB2AD,PCD邊上的中點,試比較∠APB和∠ADB的大小關系,并說明理由;

(2)如圖②,在正方形ABCD中,PCD上任意一點,試問當P點位于何處時∠APB最大?并說明理由;

問題解決

(3)某兒童游樂場的平面圖如圖③所示,場所工作人員想在OD邊上點P處安裝監(jiān)控裝置,用來監(jiān)控OC邊上的AB段,為了讓監(jiān)控效果最佳,必須要求∠APB最大,已知:∠DOC60°,OA400米,AB200米,問在OD邊上是否存在一點P,使得∠APB最大,若存在,請求出此時OP的長和∠APB的度數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面坐標系中,第1個正方形ABCD的位置如圖所示,點A的坐標為(3,0),點D的坐標為(04),延長CBx軸于點A1,作第2個正方形A1B1C1C,延長C1B1x軸于點A2;作第3個正方形A2B2C2C1按這樣的規(guī)律進行下去,第5個正方形的邊長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是O的直徑,點C是O上一點,點D在BA的延長線上,CD與O交于另一點E,DE=OB=2,D=20°,則弧BC的長度為( 。

A. π B. π C. π D. π

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著人們的生活水平的提高,家用轎車越來越多地進入家庭.小明家買了一輛小轎車,他連續(xù)記錄了7天中每天行駛的路程(如下表),以50km為標準,多于50km的記為“+”,不足50km的記為“﹣”,剛好50km的記為“0”.

第一天

第二天

第三天

第四天

第五天

第六天

第七天

路程(km)

﹣9

﹣13

0

﹣14

﹣16

+33

+19

(1)求出這7天的行駛路程中最多的一天比最少的一天多行駛多少千米?

(2)若每行駛100km需用汽油8升,每升汽油6.5元,計算小明家這7天的汽油費用共是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為響應黨的文化自信號召,某校開展了古詩詞誦讀大賽活動,現(xiàn)隨機抽取部分同學的成績進行統(tǒng)計,并繪制成如下的兩個不完整的統(tǒng)計圖,請結合圖中提供的信息,解答下列各題:

(1)直接寫出a的值,a=   ,并把頻數(shù)分布直方圖補充完整.

(2)求扇形B的圓心角度數(shù).

(3)如果全校有2000名學生參加這次活動,90分以上(含90分)為優(yōu)秀,那么估計獲得優(yōu)秀獎的學生有多少人?

查看答案和解析>>

同步練習冊答案