【題目】如圖,在平面直角坐標系中,直線l:y=x﹣與x軸交于點B1,以OB1為邊長作等邊三角形A1OB1,過點A1作A1B2平行于x軸,交直線l于點B2,以A1B2為邊長作等邊三角形A2A1B2,過點A2作A2B3平行于x軸,交直線l于點B3,以A2B3為邊長作等邊三角形A3A2B3,…,則點A2017的橫坐標是 .
科目:初中數(shù)學 來源: 題型:
【題目】某校為了解學生每周課外閱讀時間的情況,對3000名學生采用隨機抽樣的方式進行了問卷調查,調查結果分為“2小時以內”、“2小時~3小時”、“3小時~4小時”和“4小時以上”四個等級,分別用A、B、C、D表示,根據(jù)調查結果繪制成了如圖所示的兩幅不完整的統(tǒng)計圖,由圖中所給出的信息解答下列問題:
(1)x= ,樣本容量是 ;
(2)將不完整的條形統(tǒng)計圖補充完整;
(3)請估計該校3000名學生中每周課外閱讀時間在“2小時以上”的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料,并解決后面的問題.
材料:對數(shù)的創(chuàng)始人是蘇格蘭數(shù)學家納皮爾(J.Npler,1550-1617年),納皮爾發(fā)明對數(shù)是在指數(shù)書寫方式之前,直到18世紀瑞士數(shù)學家歐拉(Evler,1707-1783)才發(fā)現(xiàn)指數(shù)與對數(shù)之間的聯(lián)系.我們知道,n個相同的因數(shù)a相乘記為,如,此時,3叫做以2為底8的對數(shù),記為,即.
一般地,若(且,),則n叫做以a為底b的對數(shù),記為,即.如,則4叫做以3為底81的對數(shù),記為,即.
(1)計算下列各對數(shù)的值:________,________,________;
(2)通過觀察(1)中三數(shù)、、之間滿足的關系式是________;
(3)拓展延伸;下面這個一般性的結論成立嗎?我們來證明
(且,,)
證明:設,,
由對數(shù)的定義得:,,
∴,
∴,
又∵,,
∴(且,,).
(4)仿照(3)的證明,你能證明下面的一般性結論嗎?
(且,,).
(5)計算:的值為________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,D,E是△ABC中AB,BC邊上的點,且DE∥AC,∠ACB角平分線和它的外角的平分線分別交DE于點G和H.則下列結論錯誤的是( )
A. 若BG∥CH,則四邊形BHCG為矩形
B. 若BE=CE時,四邊形BHCG為矩形
C. 若HE=CE,則四邊形BHCG為平行四邊形
D. 若CH=3,CG=4,則CE=2.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知函數(shù) y =kx2 +(k +1)x +1(k 為實數(shù)),
(1)當 k=3 時,求此函數(shù)圖象與 x 軸的交點坐標;
(2)判斷此函數(shù)與 x 軸的交點個數(shù),并說明理由;
(3)當此函數(shù)圖象為拋物線,且頂點在 x 軸下方,頂點到 y 軸的距離為 2,求 k 的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)已知y=(m2+m)+(m﹣3)x+m2是x的二次函數(shù),求出它的解析式.
(2)用配方法求二次函數(shù)y=﹣x2+5x﹣7的頂點坐標并求出函數(shù)的最大值或最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2019年,在嵊州市道路提升工程中,甲、乙兩個工程隊分別承擔道路綠化和道路拓寬工程。已知道路綠化和道路拓寬工程的總里程數(shù)是8.6千米,其中道路綠化里程數(shù)是道路拓寬里程數(shù)的2倍少1千米。
(1)求道路綠化和道路拓寬里程數(shù)分別是多少千米;
(2)甲、乙兩個工程隊同時開始施工,甲工程隊比乙工程隊平均每天多施工10米。由于工期需要,甲工程隊在完成所承擔的施工任務后,通過技術改進使工作效率比原來提高,設乙工程隊平均每天施工米,請回答下列問題:
①根據(jù)題意,填寫下表:
乙工程隊 | 甲工程隊 | ||
技術改進前 | 技術改進后 | ||
施工天數(shù)(天)(用含的代數(shù)式表示) |
②若甲、乙兩隊同時完成施工任務,求乙工程隊平均每天施工的米數(shù)和施工的天數(shù)。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了參加“荊州市中小學生首屆詩詞大會”,某校八年級的兩班學生進行了預選,其中班上前5名學生的成績(百分制)分別為:八(1)班86,85,77,92,85;八(2)班79,85,92,85,89.通過數(shù)據(jù)分析,列表如下:
班級 | 平均分 | 中位數(shù) | 眾數(shù) | 方差 |
八(1) | 85 | b | c | 22.8 |
八(2) | a | 85 | 85 | 19.2 |
(1)直接寫出表中a,b,c的值;
(2)根據(jù)以上數(shù)據(jù)分析,你認為哪個班前5名同學的成績較好?說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com