【題目】如圖所示,二次函數(shù)ykx12+2的圖象與一次函數(shù)ykxk+2的圖象交于A、B兩點(diǎn),點(diǎn)B在點(diǎn)A的右側(cè),直線AB分別與x、y軸交于C、D兩點(diǎn),其中k0

1)求A、B兩點(diǎn)的橫坐標(biāo);

2)若△OAB是以OA為腰的等腰三角形,求k的值;

3)二次函數(shù)圖象的對(duì)稱軸與x軸交于點(diǎn)E,是否存在實(shí)數(shù)k,使得∠ODC2BEC,若存在,求出k的值;若不存在,說明理由.

【答案】(1)1,2;(2)﹣1或﹣2或﹣3;(3)存在,

【解析】

1)將二次函數(shù)與一次函數(shù)聯(lián)立得:kx12+2kxk+2,然后求解進(jìn)一步得出答案即可;

(2)分兩種情況:①OA=AB;②OA=OB,據(jù)此分類討論即可;

(3)分兩種情況:①當(dāng)點(diǎn)Bx軸上方時(shí);②當(dāng)點(diǎn)Bx軸下方時(shí),據(jù)此分類討論即可.

解:(1)將二次函數(shù)與一次函數(shù)聯(lián)立得:kx12+2kxk+2,

解得:x12

故點(diǎn)A、B的坐標(biāo)橫坐標(biāo)分別為12;

2OA,

①當(dāng)OAAB時(shí),

即:1+k25,解得:k=±2(舍去2);

②當(dāng)OAOB時(shí),

4+k+225,解得:k=﹣1或﹣3;

k的值為:﹣1或﹣2或﹣3;

3)存在,理由:

①當(dāng)點(diǎn)Bx軸上方時(shí),

過點(diǎn)BBHAE于點(diǎn)H,將△AHB的圖形放大見右側(cè)圖形,

過點(diǎn)A作∠HAB的角平分線交BH于點(diǎn)M,過點(diǎn)MMNAB于點(diǎn)N,過點(diǎn)BBKx軸于點(diǎn)K

圖中:點(diǎn)A1,2)、點(diǎn)B2,k+2),則AH=﹣kHB1,

設(shè): HMmMN,則BM1m,

ANAH=﹣k,ABNBABAN,

由勾股定理得:MB2NB2+MN2,

即:(1m2m2++k2

解得:m=﹣k2k,

在△AHM中,tanαk+tanBECk+2,

解得:k,

此時(shí)k+20,則﹣2k0,故:舍去正值,

k=﹣;

②當(dāng)點(diǎn)Bx軸下方時(shí),

同理可得:tanαk+tanBEC==-(k+2),

解得:k

此時(shí)k+20,k<﹣2,故舍去,

k的值為:﹣

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CD是⊙O的直徑,AB是⊙O的弦,ABCD,垂足為GOGOC=35,AB=8.點(diǎn)E為圓上一點(diǎn),∠ECD=15°,將 沿弦CE翻折,交CD于點(diǎn)F,圖中陰影部分的面積=_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為加快智慧校園建設(shè),某市準(zhǔn)備為試點(diǎn)學(xué)校采購(gòu)一批兩種型號(hào)的一體機(jī),經(jīng)過市場(chǎng)調(diào)查發(fā)現(xiàn),每套型一體機(jī)的價(jià)格比每套型一體機(jī)的價(jià)格多萬元,且用萬元恰好能購(gòu)買型一體機(jī)和型一體機(jī).

1)列二元一次方程組解決問題:求每套型和型一體機(jī)的價(jià)格各是多少萬元?

2)由于需要,決定再次采購(gòu)型和型一體機(jī)共套,此時(shí)每套型體機(jī)的價(jià)格比原來上漲,每套型一體機(jī)的價(jià)格不變.設(shè)再次采購(gòu)型一體機(jī)套,那么該市至少還需要投入多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形中,,分別為的中點(diǎn),連接、、,則圖中與全等的三角形(除外)有( ).

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)解方程:

2)解不等式組,并把它的解集在數(shù)軸上表示出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知四邊形DOBC是矩形,且D0,4),B6,0).若反比例函數(shù)x0)的圖象經(jīng)過線段OC的中點(diǎn)A,交DC于點(diǎn)E,交BC于點(diǎn)F.設(shè)直線EF的解析式為y2=k2x+b

1)求反比例函數(shù)和直線EF的解析式;

(溫馨提示:平面上有任意兩點(diǎn)Mx1,y1)、Nx2,y2),它們連線的中點(diǎn)P的坐標(biāo)為( ))(2)求△OEF的面積;

3)請(qǐng)結(jié)合圖象直接寫出不等式k2x -b0的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一艘輪船位于燈塔P南偏西60°方向的A處,它向東航行20海里到達(dá)燈塔P南偏西45°方向上的B處,若輪船繼續(xù)沿正東方向航行,求輪船航行途中與燈塔P的最短距離.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A、BC三個(gè)城市位置如圖所示,A城在B城正南方向180 km處,C城在B城南偏東37°方向.已知一列貨車從A城出發(fā)勻速駛往B城,同時(shí)一輛客車從B城出發(fā)勻速駛往C城,出發(fā)1小時(shí)后,貨車到達(dá)P地,客車到達(dá)M地,此時(shí)測(cè)得∠BPM26°,兩車又繼續(xù)行駛1小時(shí),貨車到達(dá)Q地,客車到達(dá)N地,此時(shí)測(cè)得∠BNQ45°,求兩車的速度.(參考數(shù)據(jù):sin37°,cos37°,tan37°,sin26°,cos26°tan26°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,銳角三角形ABC中,BC>AB>AC,甲、乙兩人想找一點(diǎn)P,使得∠BPC與∠A互補(bǔ),其作法分別如下:

(甲)以A為圓心,AC長(zhǎng)為半徑畫弧交ABP點(diǎn),則P即為所求;

(乙)作過B點(diǎn)且與AB垂直的直線l,作過C點(diǎn)且與AC垂直的直線,交lP點(diǎn),則P即為所求.

對(duì)于甲、乙兩人的作法,下列敘述何者正確?( )

A. 兩人皆正確 B. 兩人皆錯(cuò)誤

C. 甲正確,乙錯(cuò)誤 D. 甲錯(cuò)誤,乙正確

查看答案和解析>>

同步練習(xí)冊(cè)答案