【題目】如圖,已知△ABC,且∠ACB=90°.
(1)請用直尺和圓規(guī)按要求作圖(保留作圖痕跡,不寫作法和證明):
①以點A為圓心,BC邊的長為半徑作⊙A;
②以點B為頂點,在AB邊的下方作∠ABD=∠BAC.
(2)請判斷直線BD與⊙A的位置關系,并說明理由.
【答案】(1)詳見解析;(2)直線BD與⊙A相切,理由詳見解析.
【解析】
(1)①以點A為圓心,以BC的長度為半徑畫圓即可;
②以點A為圓心,以任意長為半徑畫弧,與邊AB、AC相交于兩點E、F,再以點B為圓心,以同等長度為半徑畫弧,與AB相交于一點M,再以點M為圓心,以EF長度為半徑畫弧,與前弧相交于點N,作射線BN即可得到∠ABD;
(2)根據(jù)內錯角相等,兩直線平行可得AC∥BD,再根據(jù)平行線間的距離相等可得點A到BD的距離等于BC的長度,然后根據(jù)直線與圓的位置關系判斷直線BD與⊙A相切.
解:(1)如圖所示;
(2)直線BD與⊙A相切.
∵∠ABD=∠BAC,
∴AC∥BD,
∵∠ACB=90°,⊙A的半徑等于BC,
∴點A到直線BD的距離等于BC,
∴直線BD與⊙A相切.
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩地之間有一條筆直的公路L,小明從甲地出發(fā)沿公路ι步行前往乙地,同時小亮從乙地出發(fā)沿公路L騎自行車前往甲地,小亮到達甲地停留一段時間,原路原速返回,追上小明后兩人一起步行到乙地.設小明與甲地的距離為y1米,小亮與甲地的距離為y2米,小明與小亮之間的距離為s米,小明行走的時間為x分鐘.y1、y2與x之間的函數(shù)圖象如圖1,s與x之間的函數(shù)圖象(部分)如圖2.
(1)求小亮從乙地到甲地過程中y1(米)與x(分鐘)之間的函數(shù)關系式;
(2)求小亮從甲地返回到與小明相遇的過程中s(米)與x(分鐘)之間的函數(shù)關系式;
(3)在圖2中,補全整個過程中s(米)與x(分鐘)之間的函數(shù)圖象,并確定a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了豐富學生的校園文化生活,學校開設了書法、體育、美術音樂共四門選修課程.為了合理的分配教室,教務處問卷調查了部分學生,并將了解的情況繪制成如下不完整的統(tǒng)計圖:
(1)參與問卷調查的共有________人,其中選修美術的有________人,選修體育的學生人數(shù)對應扇形統(tǒng)計圖中圓心角的度數(shù)為________.
(2)補全條形統(tǒng)計圖;
(3)若每人必須選修一門課程,且只能選一門,已知小紅沒有選體育,小剛沒有選修書法和美術,則他們選修同一門課程的概率是多少,列樹狀圖或列表法求解.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】端午節(jié)是我國的傳統(tǒng)節(jié)日,益民食品廠為了解市民對去年銷量較好的花生粽子、水果粽子、豆沙粽子、紅棗粽子(分別用A、B、C、D表示)這四種不同口味的粽子的喜愛情況,對某居民區(qū)的市民進行了抽樣調查,并根據(jù)調查結果繪制了如下兩幅不完整的統(tǒng)計圖.
(1)本次參加抽樣調查的居民有多少人?
(2)將兩幅統(tǒng)計圖補充完整;
(3)小明喜歡吃花生粽子和紅棗粽子,媽媽為他準備了四種粽子各一個,請用“列表法”或“畫樹形圖”的方法,求出小明同時選中花生粽子和紅棗粽子的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】端午節(jié)前夕舉行了南通濠河國際龍舟邀請賽,在500米直道競速賽道上,甲、乙兩隊所劃行的路程y(單位:米)與時間t(單位:分)之間的函數(shù)關系式如圖所示,根據(jù)圖中提供的信息,有下列說法:①甲隊比乙隊提前0.5分到達終點②當劃行1分鐘時,甲隊比乙隊落后50米③當劃行分鐘時,甲隊追上乙隊④當甲隊追上乙隊時,兩隊劃行的路程都是300米其中錯誤的是( 。
A. ①B. ②C. ③D. ④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小明要測量河內小島B到河邊公路AD的距離,在點A處測得∠BAD=37°,沿AD方向前進150米到達點C,測得∠BCD=45°. 求小島B到河邊公路AD的距離.
(參考數(shù)據(jù):sin37°≈ 0.60,cos37° ≈ 0.80,tan37° ≈0.75)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一次函數(shù)y=kx+4與二次函數(shù)y=ax2+c的圖像的一個交點坐標為(1,2),另一個交點是該二次函數(shù)圖像的頂點
(1)求k,a,c的值;
(2)過點A(0,m)(0<m<4)且垂直于y軸的直線與二次函數(shù)y=ax2+c的圖像相交于B,C兩點,點O為坐標原點,記W=OA2+BC2,求W關于m的函數(shù)解析式,并求W的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知是等腰直角三角形,,點D是BC的中點作正方形DEFG,使點A、C分別在DG和DE上,連接AE,BG.
試猜想線段BG和AE的數(shù)量關系是______;
將正方形DEFG繞點D逆時針方向旋轉,
判斷中的結論是否仍然成立?請利用圖2證明你的結論;
若,當AE取最大值時,求AF的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com