【題目】如圖,P是正三角形ABC內(nèi)的一點(diǎn),且PA=6,PB=8,PC=10若將△PAC繞點(diǎn)A逆時(shí)針后得到△P′AB.
(1)求點(diǎn)P與點(diǎn)P′之間的距離;
(2)求∠APB的大小.
【答案】(1)6;(2)150°.
【解析】試題分析:(1)由已知△PAC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)后,得到△P′AB,可得△PAC≌△P′AB,PA=P′A,旋轉(zhuǎn)角∠P′AP=∠BAC=60°,所以△APP′為等邊三角形,即可求得PP′;
(2)由△APP′為等邊三角形,得∠APP′=60°,在△PP′B中,已知三邊,用勾股定理逆定理證出直角三角形,得出∠P′PB=90°,可求∠APB的度數(shù).
解:(1)連接PP′,由題意可知BP′=PC=10,AP′=AP,
∠PAC=∠P′AB,而∠PAC+∠BAP=60°,
所以∠PAP′=60度.故△APP′為等邊三角形,
所以PP′=AP=AP′=6;
(2)利用勾股定理的逆定理可知:
PP′2+BP2=BP′2,所以△BPP′為直角三角形,且∠BPP′=90°
可求∠APB=90°+60°=150°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列語(yǔ)句中,不是命題的是( )
A.若兩角之和為90,則這兩個(gè)角互補(bǔ) B.同角的余角相等
C.作線段的垂直平分線 D.相等的角是對(duì)頂角
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列計(jì)算正確的是( 。
A. a5÷a3=a2 B. a3+a3=a6 C. (a3)2=a5 D. a5·a3=2a8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為4的正方形ABCD中,點(diǎn)P在AB上從A向B運(yùn)動(dòng),連接DP交AC于點(diǎn)Q.
(1)試證明:無(wú)論點(diǎn)P運(yùn)動(dòng)到AB上何處時(shí),都有△ADQ≌△ABQ;
(2)若點(diǎn)P從點(diǎn)A運(yùn)動(dòng)到點(diǎn)B,再繼續(xù)在BC上運(yùn)動(dòng)到點(diǎn)C,在整個(gè)運(yùn)動(dòng)過(guò)程中,當(dāng)點(diǎn)P 運(yùn)動(dòng)到什么位置時(shí),△ADQ恰為等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知y關(guān)于x的一次函數(shù)y=kx﹣8,函數(shù)圖象經(jīng)過(guò)點(diǎn)(﹣5,2),則k= ;當(dāng)﹣3≤x≤3時(shí),y的最大值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( )
A. 過(guò)一點(diǎn)有且只有一條直線與已知直線平行
B. 相等的角是對(duì)頂角
C. 兩條直線被第三條直線所截,同旁內(nèi)角互補(bǔ)
D. 在同一平面內(nèi),垂直于同一直線的兩條直線互相平行
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,以AC為直徑的⊙O交AB于點(diǎn)M,交BC于點(diǎn)N,連接AN,過(guò)點(diǎn)C的切線交AB的延長(zhǎng)線于點(diǎn)P.
(1)求證:∠BCP=∠BAN
(2)求證:=.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com