【題目】如圖1ABD,ACE都是等邊三角形,

1)求證:ABE≌△ADC

2)若∠ACD=15°,求∠AEB的度數(shù);

3)如圖2,當ABDACE的位置發(fā)生變化,使C、E、D三點在一條直線上,求證:ACBE

【答案】(1)見解析(2) ∠AEB=15°(3) 見解析

【解析】試題分析:(1)由等邊三角形的性質(zhì)可得AB=ADAE=AC,DAB=EAC=60°,即可得∠DAC=BAE利用SAS即可判定△ABE≌△ADC;(2)根據(jù)全等三角形的性質(zhì)即可求解;(3)由(1)的方法可證得ABE≌△ADC,根據(jù)全等三角形的性質(zhì)和等邊三角形的性質(zhì)可得∠AEB=ACD =60°即可得∠AEB=EAC,從而得ACBE

試題解析:

1)證明:∵△ABDACE都是等邊三角形

AB=AD,AE=AC

DAB=EAC=60°,

∴∠DAC=BAE

ABEADC中,

,

∴△ABE≌△ADC;

2)由(1)知ABE≌△ADC

∴∠AEB=ACD,

∵∠ACD=15°

∴∠AEB=15°;

3)同上可證:ABE≌△ADC

∴∠AEB=ACD,

又∵∠ACD=60°

∴∠AEB=60°,

∵∠EAC=60°

∴∠AEB=EAC,

ACBE

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】把幾個數(shù)用大括號括起來,中間用逗號斷開,如:{1,2,-3},{-2,7,,19},我們稱之為集合,其中的數(shù)稱為集合的元素.如果一個集合滿足:當有理數(shù)a是集合的元素時,有理數(shù)5-a也必是這個集合的元素,這樣的集合我們稱為好的集合.例如集合{5,0}就是一個好的集合.

(1)請你判斷集合{1,2},{-2,1,2.5,4,7}是不是好的集合?

(2)請你再寫出兩個好的集合(不得與上面出現(xiàn)過的集合重復);

(3)寫出所有好的集合中,元素個數(shù)最少的集合.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,點EAC的延長線上,有下列條件∠1=2,②∠3=4,③∠A=DCE,④∠D=DCE,⑤∠A+ABD=180°,⑥∠A+ACD=180°,其中能判斷ABCD的是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,一個長方形的三個頂點坐標分別為(﹣2,﹣2),(﹣2,3),(5,﹣2),則第四個頂點的坐標( 。

A. (5,3) B. (3,5) C. (7,3) D. (3,3)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為弘揚敬老愛老傳統(tǒng)美德,某校八年級(1)班的學生要去距離學校10km的敬老院看望老人,一部分學生騎自行車先走,過了20min后,其余學生乘汽車出發(fā),結(jié)果乘汽車的同學早到10min.已知汽車的速度是騎車學生的4倍,求騎車學生的速度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,方格紙中每一個小方格的邊長為1個單位,試解答下列問題:

的頂點都在方格紙的格點上,先將向右平移2個單位,再向上平移3個單位,得到,其中點、分別是A,B、C的對應點,試畫出

連接、,則線段、的位置關系為______,線段、的數(shù)量關系為______;

平移過程中,線段AB掃過部分的面積為______平方單位

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線y=kx+b經(jīng)過點A(5,0),B(1,4).

(1)求直線AB的解析式;

(2)若直線y=2x﹣4與直線AB相交于點C,求點C的坐標;

(3)根據(jù)圖象,寫出關于x的不等式2x﹣4>kx+b的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)因式分解:﹣xyz2+4xyz﹣4xy;

2)因式分解:9m+n2m﹣n2

3)解方程: .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校對學生的課外閱讀時間進行抽樣調(diào)查,將收集的數(shù)據(jù)分成A、B、C、D、E五組進行整理,并繪制成如下的統(tǒng)計圖表(圖中信息不完整).

組別

閱讀時間x(時)

人數(shù)

A

0≤x<10

k

B

10≤x<20

100

C

20≤x<30

m

D

30≤x<40

140

E

x≥40

n

請結(jié)合以上信息解答下列問題

(1)閱讀時間分組統(tǒng)計表中k、m、n的值分別是   、      ;

(2)補全閱讀人數(shù)分組統(tǒng)計圖”;

(3)若全校有3000名學生,請估算全校課外閱讀時間在20小時以下(不含20小時)的

查看答案和解析>>

同步練習冊答案