【題目】如圖1,△ABD,△ACE都是等邊三角形,
(1)求證:△ABE≌△ADC;
(2)若∠ACD=15°,求∠AEB的度數(shù);
(3)如圖2,當△ABD與△ACE的位置發(fā)生變化,使C、E、D三點在一條直線上,求證:AC∥BE.
【答案】(1)見解析(2) ∠AEB=15°(3) 見解析
【解析】試題分析:(1)由等邊三角形的性質(zhì)可得AB=AD,AE=AC,∠DAB=∠EAC=60°,即可得∠DAC=∠BAE,利用SAS即可判定△ABE≌△ADC;(2)根據(jù)全等三角形的性質(zhì)即可求解;(3)由(1)的方法可證得△ABE≌△ADC,根據(jù)全等三角形的性質(zhì)和等邊三角形的性質(zhì)可得∠AEB=∠ACD =60°,即可得∠AEB=∠EAC,從而得AC∥BE.
試題解析:
(1)證明:∵△ABD,△ACE都是等邊三角形
∴AB=AD,AE=AC,
∠DAB=∠EAC=60°,
∴∠DAC=∠BAE,
在△ABE和△ADC中,
∴,
∴△ABE≌△ADC;
(2)由(1)知△ABE≌△ADC,
∴∠AEB=∠ACD,
∵∠ACD=15°,
∴∠AEB=15°;
(3)同上可證:△ABE≌△ADC,
∴∠AEB=∠ACD,
又∵∠ACD=60°,
∴∠AEB=60°,
∵∠EAC=60°,
∴∠AEB=∠EAC,
∴AC∥BE.
科目:初中數(shù)學 來源: 題型:
【題目】把幾個數(shù)用大括號括起來,中間用逗號斷開,如:{1,2,-3},{-2,7,,19},我們稱之為集合,其中的數(shù)稱為集合的元素.如果一個集合滿足:當有理數(shù)a是集合的元素時,有理數(shù)5-a也必是這個集合的元素,這樣的集合我們稱為好的集合.例如集合{5,0}就是一個好的集合.
(1)請你判斷集合{1,2},{-2,1,2.5,4,7}是不是好的集合?
(2)請你再寫出兩個好的集合(不得與上面出現(xiàn)過的集合重復);
(3)寫出所有好的集合中,元素個數(shù)最少的集合.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,點E在AC的延長線上,有下列條件∠1=∠2,②∠3=∠4,③∠A=∠DCE,④∠D=∠DCE,⑤∠A+∠ABD=180°,⑥∠A+∠ACD=180°,其中能判斷AB∥CD的是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,一個長方形的三個頂點坐標分別為(﹣2,﹣2),(﹣2,3),(5,﹣2),則第四個頂點的坐標( 。
A. (5,3) B. (3,5) C. (7,3) D. (3,3)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為弘揚“敬老愛老”傳統(tǒng)美德,某校八年級(1)班的學生要去距離學校10km的敬老院看望老人,一部分學生騎自行車先走,過了20min后,其余學生乘汽車出發(fā),結(jié)果乘汽車的同學早到10min.已知汽車的速度是騎車學生的4倍,求騎車學生的速度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,方格紙中每一個小方格的邊長為1個單位,試解答下列問題:
的頂點都在方格紙的格點上,先將向右平移2個單位,再向上平移3個單位,得到,其中點、、分別是A,B、C的對應點,試畫出.
連接、,則線段、的位置關系為______,線段、的數(shù)量關系為______;
平移過程中,線段AB掃過部分的面積為______平方單位
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知直線y=kx+b經(jīng)過點A(5,0),B(1,4).
(1)求直線AB的解析式;
(2)若直線y=2x﹣4與直線AB相交于點C,求點C的坐標;
(3)根據(jù)圖象,寫出關于x的不等式2x﹣4>kx+b的解集.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校對學生的課外閱讀時間進行抽樣調(diào)查,將收集的數(shù)據(jù)分成A、B、C、D、E五組進行整理,并繪制成如下的統(tǒng)計圖表(圖中信息不完整).
組別 | 閱讀時間x(時) | 人數(shù) |
A | 0≤x<10 | k |
B | 10≤x<20 | 100 |
C | 20≤x<30 | m |
D | 30≤x<40 | 140 |
E | x≥40 | n |
請結(jié)合以上信息解答下列問題
(1)閱讀時間分組統(tǒng)計表中k、m、n的值分別是 、 、 ;
(2)補全“閱讀人數(shù)分組統(tǒng)計圖”;
(3)若全校有3000名學生,請估算全校課外閱讀時間在20小時以下(不含20小時)的
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com