【題目】已知四邊形ABCD是菱形,AC、BD交于點(diǎn)E,點(diǎn)FCB的延長線上,連結(jié)EFABH,以EF為直徑作⊙O,交直線ADAG兩點(diǎn),交BCK點(diǎn).

1)如圖1,連結(jié)AF,求證:四邊形AFBD是平行四邊形;

2)如圖2,當(dāng)∠ABC90°時(shí),求tanEFC的值;

3)如圖3,在(2)的條件下,連結(jié)OG,點(diǎn)P在弧FG上,過點(diǎn)PPTOFOGTPROGOFR點(diǎn),連結(jié)TR,若AG2,在點(diǎn)P運(yùn)動(dòng)過程中,探究線段TR的長是否為定值,如果是,則求出這個(gè)定值;如果不是,請說明理由.

【答案】(1)詳見解析;(2);(3)

【解析】

1)連接AF,由EF是⊙O的直徑知FAAC,由四邊形ABCD是菱形知BDACADFB,據(jù)此可得FABD,即可得證;

2)連接EK,先證四邊形ABCD是正方形,由EF是⊙O的直徑知FKEK,設(shè)BKEKa,則BCADFB2a,根據(jù)tanEFC可得答案;

3)連接OP、FA,過點(diǎn)OOMGD,并延長MOFC于點(diǎn)N,先證四邊形PROT是矩形得RTOPOG,由MNFCtanEFCtanGOM,由AG2、OMGDGM1、OM3,由勾股定理可得GO,繼而可得答案.

1)如圖1,連接AF

EF是⊙O的直徑,

∴∠FAC90°,即FAAC,

∵四邊形ABCD是菱形,

BDACADBC、即ADFB,

FABD,

∴四邊形AFBD是平行四邊形;

2)如圖2,連接EK,

∵∠ABC90°,四邊形ABCD是菱形,

∴四邊形ABCD是正方形,

EF是⊙O的直徑,

FKEK,

設(shè)BKEKa,則BCADFB2a,

tanEFC=

3TR的長是定值,

如圖3,連接OPFA,過點(diǎn)OOMGD,并延長MOFC于點(diǎn)N,

EF是⊙O的直徑,

FAEA,

又∵四邊形ABCD是正方形,

∴∠BAC45°,

∴∠GAF45°,

∴∠GOF90°,

PTOF、PROG

∴四邊形PROT是矩形,

RTOPOG

OMGD、GDFC

MNFC,

tanEFCtanGOM,

AG2、OMGD,

GM1,

OM3,

由勾股定理可得GO,

RT

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線軸交于點(diǎn),,與直線交于點(diǎn),直線軸交于點(diǎn)

(1)求該拋物線的解析式.

(2)點(diǎn)是拋物線上第四象限上的一個(gè)動(dòng)點(diǎn),連接,,當(dāng)的面積最大時(shí),求點(diǎn)的坐標(biāo).

(3)將拋物線的對稱軸向左平移3個(gè)長度單位得到直線,點(diǎn)是直線上一點(diǎn),連接,,若直線上存在使最大的點(diǎn),請直接寫出滿足條件的點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題8分)已知關(guān)于的方程

1求證:方程總有兩個(gè)實(shí)數(shù)根;

2如果為正整數(shù),且方程的兩個(gè)根均為整數(shù),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某校九年級男生200米跑的水平,從中隨機(jī)抽取部分男生進(jìn)行測試,并把測試成績分為D、C、B、A四個(gè)等次繪制成如圖所示的不完整的統(tǒng)計(jì)圖,請你依圖解答下列問題:

1a   b   ,c   ;

2)扇形統(tǒng)計(jì)圖中表示C等次的扇形所對的圓心角的度數(shù)為   度;

3)學(xué)校決定從A等次的甲、乙、丙、丁四名男生中,隨機(jī)選取兩名男生參加全市中學(xué)生200米跑比賽,請用列表法或畫樹狀圖法,求甲、乙兩名男生同時(shí)被選中的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC,AB=AC,AEBC邊上的高線,BM平分∠ABCAE于點(diǎn)M,經(jīng)過B,M 兩點(diǎn)的⊙OBC于點(diǎn)G,交AB于點(diǎn)F ,F(xiàn)B⊙O的直徑.

(1)求證:AM⊙O的切線

(2)當(dāng)BE=3,cosC=時(shí),求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,EAB的中點(diǎn),連接DE、CE.

(1)求證:ADE≌△BCE;

(2)若AB=6,AD=4,求CDE的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC內(nèi)接于⊙O,AB=AC,CO的延長線交AB于點(diǎn)D.

(1)求證:AO平分∠BAC;

(2)BC=6,sinBAC=,求ACCD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小帥家的新房子剛裝修完,便遇到罕見的大雨,于是他向爸爸提議給窗戶安上遮雨罩.如圖1所示的是他了解的一款雨罩.它的側(cè)面如圖2所示,其中頂部圓弧AB的圓心O在整直邊緣D上,另一條圓弧BC的圓心O.在水平邊緣DC的廷長線上,其圓心角為90°,BEAD于點(diǎn)E,則根據(jù)所標(biāo)示的尺寸(單位:c)可求出弧AB所在圓的半徑AO的長度為_____cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為增強(qiáng)學(xué)生體質(zhì),各學(xué)校普遍開展了陽光體育活動(dòng),某校為了解全校1000名學(xué)生每周課外體育活動(dòng)時(shí)間的情況,隨機(jī)調(diào)查了其中的50名學(xué)生,對這50名學(xué)生每周課外體育活動(dòng)時(shí)間x(單位:小時(shí))進(jìn)行了統(tǒng)計(jì).根據(jù)所得數(shù)據(jù)繪制了一幅不完整的統(tǒng)計(jì)圖,并知道每周課外體育活動(dòng)時(shí)間在6≤x<8小時(shí)的學(xué)生人數(shù)占24%.根據(jù)以上信息及統(tǒng)計(jì)圖解答下列問題:

(1)本次調(diào)查屬于 調(diào)查,樣本容量是 ;

(2)請補(bǔ)全頻數(shù)分布直方圖中空缺的部分;

(3)求這50名學(xué)生每周課外體育活動(dòng)時(shí)間的平均數(shù);

(4)估計(jì)全校學(xué)生每周課外體育活動(dòng)時(shí)間不少于6小時(shí)的人數(shù).

查看答案和解析>>

同步練習(xí)冊答案