【題目】計算:﹣32+ ﹣(cos30°﹣1)0﹣(﹣ )﹣3+82×0.1252 .
【答案】解:原式=﹣9+3 ﹣1﹣(﹣2)3+(8×0.125)2=﹣10+3 +8+1
=3 ﹣1
【解析】根據(jù)冪的乘方與積的乘方、零指數(shù)冪和負(fù)整數(shù)指數(shù)冪等概念的運算法則求解即可.
【考點精析】本題主要考查了零指數(shù)冪法則和整數(shù)指數(shù)冪的運算性質(zhì)的相關(guān)知識點,需要掌握零次冪和負(fù)整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù));aman=am+n(m、n是正整數(shù));(am)n=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù))才能正確解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】作為寧波市政府民生實事之一的公共自行車建設(shè)工作已基本完成,某部門對今年4月份中的7天進(jìn)行了公共自行車日租車量的統(tǒng)計,結(jié)果如圖:
(1)求這7天日租車量的眾數(shù)、中位數(shù)和平均數(shù);
(2)用(1)中的平均數(shù)估計4月份(30天)共租車多少萬車次;
(3)市政府在公共自行車建設(shè)項目中共投入9600萬元,估計2014年共租車3200萬車次,每車次平均收入租車費0.1元,求2014年租車費收入占總投入的百分率(精確到0.1%).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形ABCD中,AD∥BC,AD=3,BC=2,點E、F分別在兩腰上, 且EF∥AD,AE:EB=2:1;
(1)求線段EF的長;
(2)設(shè) = , = ,試用 、 表示向量 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圖1是由5個完全相同的正方體堆成的幾何體,現(xiàn)將標(biāo)有E的正方體平移至如圖2所示的位置,下列說法中正確的是( )
A.左、右兩個幾何體的主視圖相同
B.左、右兩個幾何體的左視圖相同
C.左、右兩個幾何體的俯視圖不相同
D.左、右兩個幾何體的三視圖不相同
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù) .
(1)求證:不論k為任何實數(shù),該函數(shù)的圖象與x軸必有兩個交點;
(2)若該二次函數(shù)的圖象與x軸的兩個交點在點A(1,0)的兩側(cè),且關(guān)于x的一元二次方程k2x2+(2k+3)x+1=0有兩個不相等的實數(shù)根,求k的整數(shù)值;
(3)在(2)的條件下,關(guān)于x的另一方程x2+2(a+k)x+2a﹣k2+6k﹣4=0 有大于0且小于3的實數(shù)根,求a的整數(shù)值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC中,AB=AC,tan∠B=2,BC=4,D為BC邊的中點,點E在BC邊的延長線上,且CE=BC,連接AE,F(xiàn)為線段AE的中點
(1)求線段CF的長;
(2)求∠CAE的正弦值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某校綜合實踐活動小組的同學(xué)欲測量公園內(nèi)一棵樹DE的高度,他們在這棵樹正前方一座樓亭前的臺階上A點處測得樹頂端D的仰角為30°,朝著這棵樹的方向走到臺階下的點C處,測得樹頂端D的仰角為60°.已知A點的高度AB為2m,臺階AC的傾斜角∠ACB為30°,且B、C、E三點在同一條直線上.請根據(jù)以上條件求出樹DE的高度(測傾器的高度忽略不計).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平行四邊形ABCD中,AE平分∠BAD,交BC于點E,BF平分∠ABC,交AD于點F,AE與BF交于點P,連接EF,PD.
(1)求證:四邊形ABEF是菱形.
(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)反比例函數(shù)的解析式為y= (k>0).
(1)若該反比例函數(shù)與正比例函數(shù)y=2x的圖象有一個交點的縱坐標(biāo)為2,求k的值;
(2)若該反比例函數(shù)與過點M(﹣2,0)的直線l:y=kx+b的圖象交于A,B兩點,如圖所示,當(dāng)△ABO的面積為 時,求直線l的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com